import streamlit as st import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsRegressor from geopy.distance import geodesic import googlemaps from geopy.exc import GeocoderTimedOut from streamlit_folium import st_folium import folium from branca.colormap import LinearColormap import base64 from io import BytesIO import sys import pydeck as pdk from ydata_profiling import ProfileReport import streamlit.components.v1 as components # Print the Python version print("Python version") print(sys.version) print("Version info.") print(sys.version_info) image1 = 'images/avalia-removebg-preview.png' # Function to add heatmap layer to folium map def add_heatmap_layer(map_obj, data, column_name, colormap_name, radius=15): heat_data = data[['latitude', 'longitude', column_name]].dropna() heat_layer = folium.FeatureGroup(name=f'Variável - {column_name}') cmap = LinearColormap(colors=['blue', 'white', 'red'], vmin=heat_data[column_name].min(), vmax=heat_data[column_name].max()) for index, row in heat_data.iterrows(): folium.CircleMarker( location=[row['latitude'], row['longitude']], radius=radius, fill=True, fill_color=cmap(row[column_name]), fill_opacity=0.5, weight=0, popup=f"{column_name}: {row[column_name]:.2f}" # Fix here ).add_to(heat_layer) heat_layer.add_to(map_obj) # Function to calculate distance in meters between two coordinates def calculate_distance(lat1, lon1, lat2, lon2): coords_1 = (lat1, lon1) coords_2 = (lat2, lon2) return geodesic(coords_1, coords_2).meters def knn_predict(df, target_column, features_columns, k=5): # Separate features and target variable X = df[features_columns] y = df[target_column] # Check if there is enough data for prediction if len(X) < k: return np.zeros(len(X)) # Return an array of zeros if there isn't enough data # Create KNN regressor knn = KNeighborsRegressor(n_neighbors=k) # Fit the model knn.fit(X, y) # Use the model to predict target_column for the filtered_data predictions = knn.predict(df[features_columns]) return predictions # Set wide mode st.set_page_config(layout="wide") # Create a DataFrame with sample data data = pd.read_excel('data_nexus.xlsx') # Initialize variables to avoid NameError radius_visible = True custom_address_initial = 'Centro, Lajeado - RS, Brazil' # Initial custom address #custom_lat = data['latitude'].median() custom_lat = -29.45880114339262 #custom_lon = data['longitude'].median() custom_lon = -51.97011580843118 radius_in_meters = 150000 filtered_data = data # Initialize with the entire dataset # Calculate a zoom level based on the maximum distance zoom_level = 13 # Create a sidebar for controls with st.sidebar: st.image(image1, width=200) # Add a dropdown for filtering "Fonte" selected_fonte = st.selectbox('Finalidade', data['Fonte'].unique(), index=data['Fonte'].unique().tolist().index('Venda')) data = data[data['Fonte'] == selected_fonte] # Add a dropdown for filtering "Tipo" selected_tipo = st.selectbox('Tipo de imóvel', data['Tipo'].unique(), index=data['Tipo'].unique().tolist().index('Apartamento')) data_tipo = data[data['Tipo'] == selected_tipo] custom_address = st.text_input('Informe o endereço', custom_address_initial) radius_visible = True # Show radius slider for custom coordinates gmaps = googlemaps.Client(key='AIzaSyDoJ6C7NE2CHqFcaHTnhreOfgJeTk4uSH0') # Replace with your API key try: # Ensure custom_address ends with " - RS, Brazil" custom_address = custom_address.strip() # Remove leading/trailing whitespaces if not custom_address.endswith(" - RS, Brazil"): custom_address += " - RS, Brazil" location = gmaps.geocode(custom_address)[0]['geometry']['location'] custom_lat, custom_lon = location['lat'], location['lng'] except (IndexError, GeocoderTimedOut): st.error("Erro: Não foi possível geocodificar o endereço fornecido. Por favor, verifique e tente novamente.") # Conditionally render the radius slider if radius_visible: radius_in_meters = st.number_input('Selecione raio (em metros)', min_value=0, max_value=100000, value=2000) # Add sliders to filter data based #atotal_range = st.slider('Área Total', float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max()), (float(data_tipo['Atotal'].min()), float(data_tipo['Atotal'].max())), step=.1 if data_tipo['Atotal'].min() != data_tipo['Atotal'].max() else 0.1) #apriv_range = st.slider('Área Privativa', float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max()), (float(data_tipo['Apriv'].min()), float(data_tipo['Apriv'].max())), step=.1 if data_tipo['Apriv'].min() != data_tipo['Apriv'].max() else 0.1) # Create two columns for Área Total inputs col1, col2 = st.columns(2) with col1: atotal_min = st.number_input('Área Total mínima', min_value=float(data_tipo['Atotal'].min()), max_value=float(data_tipo['Atotal'].max()), value=float(data_tipo['Atotal'].min()), step=0.1) with col2: atotal_max = st.number_input('Área Total máxima', min_value=float(data_tipo['Atotal'].min()), max_value=float(data_tipo['Atotal'].max()), value=float(data_tipo['Atotal'].max()), step=0.1) # Create two columns for Área Privativa inputs col3, col4 = st.columns(2) with col3: apriv_min = st.number_input('Área Privativa mínima', min_value=float(data_tipo['Apriv'].min()), max_value=float(data_tipo['Apriv'].max()), value=float(data_tipo['Apriv'].min()), step=0.1) with col4: apriv_max = st.number_input('Área Privativa máxima', min_value=float(data_tipo['Apriv'].min()), max_value=float(data_tipo['Apriv'].max()), value=float(data_tipo['Apriv'].max()), step=0.1) #data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_range[0], atotal_range[1])) & #(data_tipo['Apriv'].between(apriv_range[0], apriv_range[1]))] data_tipo = data_tipo[(data_tipo['Atotal'].between(atotal_min, atotal_max)) & (data_tipo['Apriv'].between(apriv_min, apriv_max))] filtered_data = data_tipo[data_tipo.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters] filtered_data = filtered_data.dropna() # Drop rows with NaN values # Add a custom CSS class to the map container st.markdown(f"""""", unsafe_allow_html=True) # Determine which area feature to use for prediction filtered_data['area_feature'] = np.where(filtered_data['Apriv'] != 0, filtered_data['Apriv'], filtered_data['Atotal']) # Define the target column based on conditions filtered_data['target_column'] = np.where(filtered_data['Vunit_priv'] != 0, filtered_data['Vunit_priv'], filtered_data['Vunit_total']) # Apply KNN and get predicted target values predicted_target = knn_predict(filtered_data, 'target_column', ['latitude', 'longitude', 'area_feature']) # Update with your features # Add predicted target values to filtered_data filtered_data['Predicted_target'] = predicted_target # Set custom width for columns tab1, tab2, tab3, tab4 = st.tabs(["Mapa", "Planilha", "Análise dos Dados", "Regressão Linear"]) with tab1: # Define a PyDeck view state for the initial map view view_state = pdk.ViewState(latitude=filtered_data['latitude'].mean(), longitude=filtered_data['longitude'].mean(), zoom=zoom_level) # Define a PyDeck layer for plotting layer = pdk.Layer( "ScatterplotLayer", filtered_data, get_position=["longitude", "latitude"], get_color="[237, 181, 0, 160]", # RGBA color for light orange, adjust opacity with the last number get_radius=100, # Adjust dot size as needed ) # Create a PyDeck map using the defined layer and view state deck_map = pdk.Deck(layers=[layer], initial_view_state=view_state, map_style="mapbox://styles/mapbox/light-v9") # Display the map in Streamlit st.pydeck_chart(deck_map) #st.map(filtered_data, zoom=zoom_level, use_container_width=True) with tab2: st.write("Dados:", filtered_data) # Debug: Print filtered_data if st.button('Baixar planilha'): st.write("Preparando...") # Set up the file to be downloaded output_df = filtered_data # Create a BytesIO buffer to hold the Excel file excel_buffer = BytesIO() # Convert DataFrame to Excel and save to the buffer with pd.ExcelWriter(excel_buffer, engine="xlsxwriter") as writer: output_df.to_excel(writer, index=False, sheet_name="Sheet1") # Reset the buffer position to the beginning excel_buffer.seek(0) # Create a download link b64 = base64.b64encode(excel_buffer.read()).decode() href = f'Clique aqui para baixar a planilha' #st.markdown(href, unsafe_allow_html=True) # Use st.empty() to create a placeholder and update it with the link download_placeholder = st.empty() download_placeholder.markdown(href, unsafe_allow_html=True) with tab3: k_threshold = 5 # Function to perform bootstrap on the predicted target values def bootstrap_stats(bound_data, num_samples=1000): # Reshape the predicted_target array bound_data = np.array(bound_data).reshape(-1, 1) # Bootstrap resampling bootstrapped_means = [] for _ in range(num_samples): bootstrap_sample = np.random.choice(bound_data.flatten(), len(bound_data), replace=True) bootstrapped_means.append(np.mean(bootstrap_sample)) # Calculate lower and higher bounds lower_bound = np.percentile(bootstrapped_means, 16.) higher_bound = np.percentile(bootstrapped_means, 84.) return lower_bound, higher_bound # Apply KNN and get predicted Predicted_target values predicted_target = knn_predict(filtered_data, 'Predicted_target', ['latitude', 'longitude', 'area_feature']) # Check if there are predictions to display if 'Predicted_target' in filtered_data.columns and not np.all(predicted_target == 0): # Apply bootstrap - bounds lower_bound, higher_bound = bootstrap_stats(filtered_data['target_column']) mean_value = np.mean(filtered_data['Predicted_target']) # Display the results with custom styling st.markdown("## **Algoritmo KNN (K-nearest neighbors)**") st.write(f"Valor médio (Reais/m²) para as características selecionadas: ${mean_value:.2f}$ Reais") st.write(f"Os valores podem variar entre ${lower_bound:.2f}$ e ${higher_bound:.2f}$ Reais, dependendo das características dos imóveis.") else: st.warning(f"**Dados insuficientes para inferência do valor. Mínimo necessário:** {k_threshold}") # Generate the profile report with st.spinner('Carregando análise...'): profile = ProfileReport(filtered_data, title="Análise Exploratória dos Dados", explorative=True) print(profile.config.json(indent=4)) profile.config.html.style.primary_colors = ['#FFD700', '#FFD700', '#FFD700'] # Define todas as cores primárias para amarelo ouro profile_html = profile.to_html() # Replace English text with Portuguese profile_html = profile_html.replace("Overview", "Visão geral") profile_html = profile_html.replace("Alerts", "Alertas") profile_html = profile_html.replace("Reproduction", "Reprodução") profile_html = profile_html.replace("Dataset statistics", "Estatísticas do conjunto de dados") profile_html = profile_html.replace("Variable types", "Tipos de variáveis") profile_html = profile_html.replace("Variables", "Variáveis") profile_html = profile_html.replace("Interactions", "Interações") profile_html = profile_html.replace("Correlations", "Correlações") profile_html = profile_html.replace("Missing values", "Valores faltantes") profile_html = profile_html.replace("Sample", "Amostra") profile_html = profile_html.replace("Number of variables", "Número de variáveis") profile_html = profile_html.replace("Number of observations", "Número de observações") profile_html = profile_html.replace("Missing cells", "Células faltantes") profile_html = profile_html.replace("Missing cells (%)", "Células faltantes (%)") profile_html = profile_html.replace("Duplicate rows", "Linhas duplicadas") profile_html = profile_html.replace("Duplicate rows (%)", "Linhas duplicadas (%)") profile_html = profile_html.replace("Total size in memory", "Tamanho total na memória") profile_html = profile_html.replace("Average record size in memory", "Tamanho médio do registro na memória") profile_html = profile_html.replace("Text", "Texto") profile_html = profile_html.replace("Numeric", "Numérico") profile_html = profile_html.replace("Categorical", "Categórico") profile_html = profile_html.replace("Distinct", "Distinto") profile_html = profile_html.replace("Distinct (%)", "Distinto (%)") profile_html = profile_html.replace("Missing", "Faltando") profile_html = profile_html.replace("Missing (%)", "Faltando (%)") profile_html = profile_html.replace("Memory size", "Tamanho da memória") profile_html = profile_html.replace("Real number", "Número real") profile_html = profile_html.replace("Infinite", "Infinito") profile_html = profile_html.replace("Infinite (%)", "Infinito (%)") profile_html = profile_html.replace("Mean", "Média") profile_html = profile_html.replace("Minimum", "Mínimo") profile_html = profile_html.replace("Maximum", "Máximo") profile_html = profile_html.replace("Zeros", "Zeros") profile_html = profile_html.replace("Zeros (%)", "Zeros (%)") profile_html = profile_html.replace("Negative", "Negativo") profile_html = profile_html.replace("Negative (%)", "Negativo (%)") profile_html = profile_html.replace("Other values (2)", "Outros valores (2)") profile_html = profile_html.replace("Link", "Link") profile_html = profile_html.replace("UNIQUE", "ÚNICO") profile_html = profile_html.replace("CONSTANT", "CONSTANTE") profile_html = profile_html.replace("Average", "Média") profile_html = profile_html.replace("Number of rows", "Número de linhas") profile_html = profile_html.replace("Distinct values", "Valores distintos") profile_html = profile_html.replace("Histogram", "Histograma") profile_html = profile_html.replace("Top", "Top") profile_html = profile_html.replace("Bottom", "Inferior") profile_html = profile_html.replace("Frequency", "Frequência") profile_html = profile_html.replace("has constant value", "tem valores constantes") profile_html = profile_html.replace("has unique value", "tem valores únicos") profile_html = profile_html.replace("Analysis started", "Início da análise") profile_html = profile_html.replace("Analysis finished", "Término da análise") profile_html = profile_html.replace("Duration", "Duração") profile_html = profile_html.replace("Software version", "Versão do software") profile_html = profile_html.replace("Download configuration", "Configuração para download") profile_html = profile_html.replace("Select Columns", "Selecione coluna") profile_html = profile_html.replace("Length", "Comprimento") profile_html = profile_html.replace("Max length", "Comprimento máximo") profile_html = profile_html.replace("Median length", "Comprimento mediano") profile_html = profile_html.replace("Mean length", "Comprimento médio") profile_html = profile_html.replace("Min length", "Comprimento mínimo") profile_html = profile_html.replace("Characters and Unicode", "Caracteres e Unicode") profile_html = profile_html.replace("Total characters", "Total de caracteres") profile_html = profile_html.replace("Distinct characters", "Caracteres distintos") profile_html = profile_html.replace("Distinct categories", "Categorias distintas") profile_html = profile_html.replace("Distinct scripts", "Scripts distintos") profile_html = profile_html.replace("Distinct blocks", "Blocos distintos") profile_html = profile_html.replace("The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.", "O Padrão Unicode atribui propriedades de caracteres a cada ponto de código, que podem ser usados para analisar variáveis textuais.") profile_html = profile_html.replace("Unique", "Único") profile_html = profile_html.replace("Unique (%)", "Único (%)") profile_html = profile_html.replace("Words", "Palavras") profile_html = profile_html.replace("Characters", "Caracteres") profile_html = profile_html.replace("Most occurring characters", "Caracteres mais frequentes") profile_html = profile_html.replace("Categories", "Categorias") profile_html = profile_html.replace("Most occurring categories", "Categorias mais frequentes") profile_html = profile_html.replace("(unknown)", "(desconhecido)") profile_html = profile_html.replace("Most frequent character per category", "Caractere mais frequente por categoria") profile_html = profile_html.replace("Scripts", "Scripts") profile_html = profile_html.replace("Most occurring scripts", "Scripts mais frequentes") profile_html = profile_html.replace("Most frequent character per script", "Caractere mais frequente por script") profile_html = profile_html.replace("Blocks", "Blocos") profile_html = profile_html.replace("Most occurring blocks", "Blocos mais frequentes") profile_html = profile_html.replace("Frequency (%)", "Frequência (%)") profile_html = profile_html.replace("Most frequent character per block", "Caractere mais frequente por bloco") profile_html = profile_html.replace("Matrix", "Matriz") profile_html = profile_html.replace("First rows", "Primeiras linhas") profile_html = profile_html.replace("Last rows", "Últimas linhas") profile_html = profile_html.replace("More details", "Maior detalhamento") profile_html = profile_html.replace("Statistics", "Estatísticas") profile_html = profile_html.replace("Quantile statistics", "Estatísticas de quantis") profile_html = profile_html.replace("Common values", "Valores comuns") profile_html = profile_html.replace("Extreme values", "Valores extremos") profile_html = profile_html.replace("5-th percentile", "5º percentil") profile_html = profile_html.replace("median", "mediana") profile_html = profile_html.replace("95-th percentile", "95º percentil") profile_html = profile_html.replace("Range", "Intervalo") profile_html = profile_html.replace("Interquartile range (IQR)", "Intervalo Interquartil") profile_html = profile_html.replace("Descriptive statistics", "Estatísticas descritivas") profile_html = profile_html.replace("Standard deviation", "Desvio padrão") profile_html = profile_html.replace("Coefficient of variation (CV)", "Coeficiente de variação (CV)") profile_html = profile_html.replace("Kurtosis", "Curtose") profile_html = profile_html.replace("Median Absolute Deviation (MAD)", "Desvio Absoluto Mediano (MAD)") profile_html = profile_html.replace("Skewness", "Assimetria") profile_html = profile_html.replace("Sum", "Soma") profile_html = profile_html.replace("Variance", "Variância") profile_html = profile_html.replace("Monotonicity", "Monotonicidade") profile_html = profile_html.replace("Not monotonic", "Não monotônica") profile_html = profile_html.replace("Histogram with fixed size bins (bins=16)", "Histograma com intervalos de tamanho fixo (intervalos=16)") profile_html = profile_html.replace("Minimum 10 values", "Mínimo 10 valores") profile_html = profile_html.replace("Maximum 10 values", "Máximo 10 valores") profile_html = profile_html.replace("1st row", "1ª linha") profile_html = profile_html.replace("2nd row", "2ª linha") profile_html = profile_html.replace("3rd row", "3ª linha") profile_html = profile_html.replace("4th row", "4ª linha") profile_html = profile_html.replace("5th row", "5ª linha") # Display the modified HTML in Streamlit components.html(profile_html, height=600, scrolling=True) with tab4: components.iframe("https://davidsb-rl-2.hf.space", height=600, scrolling=True)