import streamlit as st import pandas as pd import numpy as np import openpyxl from sklearn.neighbors import KNeighborsRegressor from geopy.distance import geodesic # Set wide mode st.set_page_config(layout="wide") # Set dark theme st.markdown( """ """, unsafe_allow_html=True ) # Create a DataFrame with sample data data = pd.read_excel('ven_ter_fim_PEDÓ.xlsx') # Function to calculate distance in meters between two coordinates def calculate_distance(lat1, lon1, lat2, lon2): coords_1 = (lat1, lon1) coords_2 = (lat2, lon2) return geodesic(coords_1, coords_2).meters # Find the maximum distance between coordinates max_distance = 0 for index, row in data.iterrows(): distance = calculate_distance(row['latitude'], row['longitude'], data['latitude'].mean(), data['longitude'].mean()) if distance > max_distance: max_distance = distance # Calculate a zoom level based on the maximum distance zoom_level = round(15 - np.log10(max_distance)) # Create a sidebar for controls with st.sidebar: # Display a title st.title('avalia.se') # Dropdown to select specific coordinates selected_coords = st.selectbox('Selecione Coordenadas', ['Random', 'Custom']) if selected_coords == 'Custom': custom_lat = st.number_input('Enter Latitude', value=-29.45086) custom_lon = st.number_input('Enter Longitude', value=-51.9847) radius_visible = True # Show radius slider for custom coordinates else: custom_lat, custom_lon = data['latitude'].mean(), data['longitude'].mean() radius_visible = False # Hide radius slider for random coordinates # Slider for setting the zoom level zoom_level = st.slider('Nível de zoom', min_value=1, max_value=15, value=zoom_level) # Conditionally render the radius slider if radius_visible: radius_in_meters = st.slider('Selecione raio (em metros)', min_value=100, max_value=5000, value=1000) if selected_coords == 'Custom' and radius_visible: # Filter data based on the radius and drop NaN values filtered_data = data[data.apply(lambda x: calculate_distance(x['latitude'], x['longitude'], custom_lat, custom_lon), axis=1) <= radius_in_meters] filtered_data = filtered_data.dropna() # Apply KNN and get predicted Vunit values predicted_vunit = knn_predict(filtered_data, 'Vunit', knn_features) # Add predicted Vunit values to filtered_data filtered_data['Predicted_Vunit'] = predicted_vunit # Add a custom CSS class to the map container st.markdown(f"""""", unsafe_allow_html=True) # Wrap the map in a container with the custom CSS class with st.container(): st.map(filtered_data, zoom=zoom_level, use_container_width=True) # Function to apply KNN and return Vunit values def knn_predict(df, target_column, features_columns, k=5): # Separate features and target variable X = df[features_columns] y = df[target_column] # Create KNN regressor knn = KNeighborsRegressor(n_neighbors=k) # Fit the model knn.fit(X, y) # Use the model to predict Vunit for the filtered_data predictions = knn.predict(filtered_data[features_columns]) return predictions # Features columns for KNN knn_features = ['latitude', 'longitude', 'Area'] # Add other relevant features # Check if KNN should be applied if selected_coords == 'Custom' and radius_visible: # Apply KNN and get predicted Vunit values predicted_vunit = knn_predict(data, 'Vunit', knn_features) # Add predicted Vunit values to filtered_data filtered_data['Predicted_Vunit'] = predicted_vunit # Display the map and filtered_data with st.container(): if selected_coords == 'Custom': st.map(filtered_data, zoom=zoom_level, use_container_width=True) # Display the predicted Vunit values if applicable if 'Predicted_Vunit' in filtered_data.columns: st.write("Predicted Vunit Values:") st.write(filtered_data[['latitude', 'longitude', 'Vunit', 'Predicted_Vunit']])