Spaces:
Sleeping
Sleeping
File size: 2,664 Bytes
c5a97b3 2598bbd 3992853 c5a97b3 2598bbd 7a6bd46 2598bbd 7a6bd46 3992853 2598bbd c5a97b3 3bd1e98 78ac961 7a6bd46 2598bbd c5a97b3 3992853 78ac961 c5a97b3 3bd1e98 2598bbd 3bd1e98 78ac961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import requests
import pandas as pd
from difflib import get_close_matches
import re # Importa o módulo de expressões regulares
def fetch_data_to_dataframe(query, limit=50, source="mercadolibre"):
if source == "mercadolibre":
BASE_URL = "https://api.mercadolibre.com/sites/MLB/search"
params = {'q': query, 'limit': limit}
response = requests.get(BASE_URL, params=params)
if response.status_code == 200:
data = response.json()
if 'results' in data:
items = data['results']
df = pd.DataFrame(items)
df = df[['title', 'price', 'currency_id', 'condition', 'permalink']]
df.columns = ['Title', 'Price', 'Currency', 'Condition', 'Link']
return df
return pd.DataFrame()
def refinar_resultados(df):
# Filtra itens que não contêm "kit" no título e não indicam múltiplas unidades
df_refinado = df[~df['Title'].str.contains("kit", case=False)]
# Expressão regular para identificar números seguidos por palavras relacionadas a quantidade
padrao_unidades = r'\b(\d+)\s*(unidade|unidades|pacote|pacotes|caixa|caixas)\b'
df_refinado = df_refinado[~df_refinado['Title'].str.contains(padrao_unidades, case=False, regex=True)]
return df_refinado
def filtrar_itens_similares(df, termo_pesquisa, limite=5):
titulos = df['Title'].tolist()
titulos_similares = get_close_matches(termo_pesquisa, titulos, n=limite, cutoff=0.1)
df_filtrado = df[df['Title'].isin(titulos_similares)]
return df_filtrado
def integrated_app(query):
df = fetch_data_to_dataframe(query, 50, "mercadolibre")
if df.empty:
return "Nenhum dado encontrado. Tente uma consulta diferente.", pd.DataFrame()
df = refinar_resultados(df) # Chama a função de refinamento
df_similares = filtrar_itens_similares(df, query)
if df_similares.empty:
return "Nenhum item similar encontrado.", pd.DataFrame()
else:
median_price = df_similares['Price'].median()
return f"Preço Mediano dos Itens Similares: {median_price}", df_similares
iface = gr.Interface(fn=integrated_app,
inputs=gr.Textbox(label="Digite sua consulta"),
outputs=[gr.Textbox(label="Preço Mediano"), gr.Dataframe(label="Resultados da Pesquisa")],
title="Análise Integrada de Bens",
description="Esta aplicação busca dados no Mercado Livre e filtra para encontrar itens com nomes similares ao termo de pesquisa, oferecendo uma análise de preços e características desses itens.")
iface.launch()
|