Spaces:
Sleeping
Sleeping
fschwartzer
commited on
Commit
•
9b0a7bb
1
Parent(s):
074db95
Update app.py
Browse files
app.py
CHANGED
@@ -64,22 +64,21 @@ def calcular_fator_avaliacao(titulo, EC, PU):
|
|
64 |
fator_avaliacao = max((4 * ec_pontuacao + 6 * PVU - 3 * PUB) / 100, VR)
|
65 |
return fator_avaliacao
|
66 |
|
67 |
-
def select_nearest_items(df
|
68 |
median_price = df['Price'].median()
|
69 |
df['Distance'] = (df['Price'] - median_price).abs()
|
70 |
-
df_sorted = df.sort_values(
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
for _, row in df_sorted.iterrows():
|
75 |
-
if
|
|
|
|
|
|
|
76 |
break
|
77 |
-
|
78 |
-
selected_items = selected_items.append(row, ignore_index=True)
|
79 |
-
marketplaces_seen.add(row['Marketplace'])
|
80 |
-
|
81 |
-
selected_items = selected_items.drop(columns=['Distance']) # Remove the temporary 'Distance' column
|
82 |
-
return selected_items
|
83 |
|
84 |
def integrated_app(query, titulo, EC, PU):
|
85 |
df_mercadolibre = fetch_data_to_dataframe(query, 50, "mercadolibre")
|
|
|
64 |
fator_avaliacao = max((4 * ec_pontuacao + 6 * PVU - 3 * PUB) / 100, VR)
|
65 |
return fator_avaliacao
|
66 |
|
67 |
+
def select_nearest_items(df):
|
68 |
median_price = df['Price'].median()
|
69 |
df['Distance'] = (df['Price'] - median_price).abs()
|
70 |
+
df_sorted = df.sort_values('Distance')
|
71 |
+
|
72 |
+
# Ensuring unique marketplaces, maintaining a list of included marketplaces
|
73 |
+
included_marketplaces = set()
|
74 |
+
nearest_items = pd.DataFrame()
|
75 |
for _, row in df_sorted.iterrows():
|
76 |
+
if row['Marketplace'] not in included_marketplaces:
|
77 |
+
nearest_items = nearest_items.append(row, ignore_index=True)
|
78 |
+
included_marketplaces.add(row['Marketplace'])
|
79 |
+
if len(included_marketplaces) == 5:
|
80 |
break
|
81 |
+
return nearest_items
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
def integrated_app(query, titulo, EC, PU):
|
84 |
df_mercadolibre = fetch_data_to_dataframe(query, 50, "mercadolibre")
|