import gradio as gr import requests import pandas as pd from rapidfuzz import process, fuzz bens_df = pd.read_excel('bens_tab.xlsx') data_crawler = pd.read_csv('data_crawler.csv', index_col=False) data_crawler = data_crawler[['Title', 'Price', 'Currency', 'Condition', 'Link', 'Marketplace']] def fetch_data_to_dataframe(query, limit=50, source="mercadolibre"): if source == "mercadolibre": BASE_URL = "https://api.mercadolibre.com/sites/MLB/search" params = {'q': query, 'limit': limit} response = requests.get(BASE_URL, params=params) if response.status_code == 200: data = response.json() items = data.get('results', []) df = pd.DataFrame(items)[['title', 'price', 'currency_id', 'condition', 'permalink']] df.columns = ['Title', 'Price', 'Currency', 'Condition', 'Link'] df['Marketplace'] = "Mercado Livre" return df return pd.DataFrame() def refinar_resultados(df, exclude_word="conjunto", include_word=False): df['Title'] = df['Title'].astype(str) df_refinado = df[~df['Title'].str.contains("kit", case=False, na=False)] df_refinado = df[~df['Title'].str.contains("Kit", case=False, na=False)] df_refinado = df[~df['Title'].str.contains("conj", case=False, na=False)] df_refinado = df[~df['Title'].str.contains(" e ", case=False, na=False)] padrao_unidades = r'\b(\d+)\s*(unidade|unidades|pacote|pacotes|caixa|caixas)\b' df_refinado = df_refinado[~df_refinado['Title'].str.contains(padrao_unidades, case=False, regex=True)] if not include_word: # Exclude results containing "conjunto" if it's not part of the original query df_refinado = df_refinado[~df_refinado['Title'].str.contains(exclude_word, case=False)] return df_refinado def get_best_match(query, choices, limit=50): # Using RapidFuzz for improved performance and fuzzy matching matches = process.extract(query, choices, scorer=fuzz.WRatio, limit=limit) return [match[0] for match in matches if match[1] > 70] def match_query_words_in_titles(query, title): """ Check if all words in the query have a close match within the title. Returns True if all words match to a certain degree; False otherwise. """ query_words = query.lower().split() match_threshold = 80 # Adjust this threshold as needed for word in query_words: # Find the best match for each word in the query within the title match_score = fuzz.partial_ratio(word, title.lower()) if match_score < match_threshold: return False # If any word doesn't match well enough, return False return True # All words matched well enough def filtrar_itens_similares(df, termo_pesquisa, limit=50): # Apply the match function to each title, filtering for those that match the query words matches = df['Title'].apply(lambda title: match_query_words_in_titles(termo_pesquisa, title)) df_filtrado = df[matches] # Further refine the list to the top N matches based on overall similarity to the query df_filtrado['Overall_Similarity'] = df_filtrado['Title'].apply(lambda title: fuzz.WRatio(termo_pesquisa, title)) df_filtrado = df_filtrado.sort_values('Overall_Similarity', ascending=False).head(limit) return df_filtrado def calcular_fator_avaliacao(titulo, EC, PU): filtered_df = bens_df[bens_df['TITULO'] == titulo] if filtered_df.empty: return None # Or handle the error as needed bem_info = filtered_df.iloc[0] VU, VR = bem_info['VIDA_UTIL'], bem_info['VALOR_RESIDUAL'] ec_pontuacao = {'Excelente': 10, 'Bom': 8, 'Regular': 5, 'Péssimo': 2}[EC] PU, PVU, PUB = float(PU), min(10 - ((PU - 1) * (10 / VU)), 10), min(10 - (((VU - PU) - 1) * (10 / VU)), 10) fator_avaliacao = max((4 * ec_pontuacao + 6 * PVU - 3 * PUB) / 100, VR) return fator_avaliacao def select_nearest_items(df, query): # Lower the title similarity threshold if necessary df['Title_Similarity'] = df['Title'].apply(lambda x: fuzz.WRatio(query, x)) df_filtered = df[df['Title_Similarity'] > 70] # Adjusted threshold # Calculate mode price in a more inclusive manner mode_price = df_filtered['Price'].mode() if mode_price.empty: target_price = df_filtered['Price'].median() else: target_price = mode_price.min() df_filtered['Distance'] = (df_filtered['Price'] - target_price).abs() df_sorted = df_filtered.sort_values(['Distance', 'Title_Similarity'], ascending=[True, False]) # Ensure diversity in marketplaces marketplaces_selected = set() results = [] for _, row in df_sorted.iterrows(): if row['Marketplace'] not in marketplaces_selected and len(marketplaces_selected) < 5: results.append(row) marketplaces_selected.add(row['Marketplace']) if len(results) >= 5: break return pd.DataFrame(results) def search_with_fallback(query, df, limit=50): query_parts = query.split() include_conjunto = "conjunto" in query.lower() for i in range(len(query_parts), 0, -1): simplified_query = " ".join(query_parts[:i]) df_refinado = refinar_resultados(df, include_word=include_conjunto) df_filtrado = filtrar_itens_similares(df_refinado, simplified_query, limit=limit) if not df_filtrado.empty: return df_filtrado return pd.DataFrame() def integrated_app(query, titulo, EC, PU): df_mercadolibre = fetch_data_to_dataframe(query, 50, "mercadolibre") print(df_mercadolibre) df_combined = pd.concat([df_mercadolibre, data_crawler], ignore_index=True) print(df_combined) if df_combined.empty: return "Nenhum dado encontrado. Tente uma consulta diferente.", pd.DataFrame() # Pass whether "conjunto" is part of the original query include_conjunto = "conjunto" in query.lower() df_refined = refinar_resultados(df_combined, include_word=include_conjunto) df_similares = search_with_fallback(query, df_refined) if df_similares.empty: return "Nenhum item similar encontrado.", pd.DataFrame() df_nearest = select_nearest_items(df_similares, query) if df_nearest.empty: return "Nenhum resultado próximo encontrado.", pd.DataFrame() fator_avaliacao = calcular_fator_avaliacao(titulo, EC, PU) valor_avaliacao = df_nearest['Price'].mean() * fator_avaliacao return f"Valor Médio do Bem: R$ {df_nearest['Price'].mean():.2f}, Fator de Avaliação: {fator_avaliacao*100:.2f}%, Valor de Avaliação: R$ {valor_avaliacao:.2f}", df_nearest iface = gr.Interface(fn=integrated_app, inputs=[gr.Textbox(label="Digite sua consulta"), gr.Dropdown(label="Classificação Contábil do Bem", choices=bens_df['TITULO'].unique().tolist(), value="MOBILIÁRIO EM GERAL"), gr.Radio(label="Estado de Conservação do Bem", choices=['Excelente', 'Bom', 'Regular', 'Péssimo'], value="Excelente"), gr.Number(label="Período utilizado (anos)", value=1)], outputs=[gr.Textbox(label="Cálculo"), gr.Dataframe(label="Resultados da Pesquisa")], theme=gr.themes.Monochrome(), title="Avaliação de Bens Móveis", description="""

avalia.se

""") iface.launch()