File size: 3,242 Bytes
743df17
 
 
 
 
 
a866003
743df17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a866003
 
c600324
a866003
c600324
a866003
 
 
c600324
a866003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c600324
743df17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import torch
import gradio as gr
import time
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores200_codes import flores_codes
import vinai_translator

def load_models():
    # build model and tokenizer
    model_name_dict = {#'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
                  #'nllb-1.3B': 'facebook/nllb-200-1.3B',
                  'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
                  #'nllb-3.3B': 'facebook/nllb-200-3.3B',
                  }

    model_dict = {}

    for call_name, real_name in model_name_dict.items():
        print('\tLoading model: %s' % call_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
        tokenizer = AutoTokenizer.from_pretrained(real_name)
        model_dict[call_name+'_model'] = model
        model_dict[call_name+'_tokenizer'] = tokenizer

    return model_dict

def translation(source, target, text):
    source = flores_codes[source]
    target = flores_codes[target]
    output = ""
    
    start_time = time.time()
    chunks = text.splitlines(True)

    if source == "vie_Latn" or target == "eng_Latn":
        for chunk in chunks:
            stchunk = vinai_translator.translate_vi2en(chunk)
            output += stchunk+"\n"
    elif source == "eng_Latn" or target == "vie_Latn":
        for chunk in chunks:
            stchunk = vinai_translator.translate_en2vi(chunk)
            output += stchunk+"\n"
    else:
        if len(model_dict) == 2:
            #model_name = 'nllb-distilled-600M'
            model_name = 'nllb-distilled-1.3B'

            model = model_dict[model_name + '_model']
            tokenizer = model_dict[model_name + '_tokenizer']

            translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
            for chunk in chunks:
                stchunk = translator(chunk+"<mask>", max_length=400, num_beams=5)
                output += stchunk[0]['translation_text']+"\n"
                
    end_time = time.time()

    result = {'inference_time': end_time - start_time,
              'source': source,
              'target': target,
              'result': output}
    return result

if __name__ == '__main__':
    print('\tinit models')

    global model_dict

    model_dict = load_models()
    
    # define gradio demo
    lang_codes = list(flores_codes.keys())
    #inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'),
    inputs = [gr.inputs.Dropdown(lang_codes, default='English', label='Source'),
              gr.inputs.Dropdown(lang_codes, default='Korean', label='Target'),
              gr.inputs.Textbox(lines=5, label="Input text"),
              ]

    outputs = gr.outputs.JSON()

    title = "NLLB distilled 600M demo"

    demo_status = "Demo is running on CPU"
    description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
    examples = [
    ['English', 'Korean', 'Hi. nice to meet you']
    ]

    gr.Interface(translation,
                 inputs,
                 outputs,
                 title=title,
                 description=description,
                 ).launch()