translator / vinai_translator.py
futranbg's picture
Create vinai_translator.py
307936e
raw
history blame
2.56 kB
# coding=utf-8
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
dict_map = {
"òa": "oà",
"Òa": "Oà",
"ÒA": "OÀ",
"óa": "oá",
"Óa": "Oá",
"ÓA": "OÁ",
"ỏa": "oả",
"Ỏa": "Oả",
"ỎA": "OẢ",
"õa": "oã",
"Õa": "Oã",
"ÕA": "OÃ",
"ọa": "oạ",
"Ọa": "Oạ",
"ỌA": "OẠ",
"òe": "oè",
"Òe": "Oè",
"ÒE": "OÈ",
"óe": "oé",
"Óe": "Oé",
"ÓE": "OÉ",
"ỏe": "oẻ",
"Ỏe": "Oẻ",
"ỎE": "OẺ",
"õe": "oẽ",
"Õe": "Oẽ",
"ÕE": "OẼ",
"ọe": "oẹ",
"Ọe": "Oẹ",
"ỌE": "OẸ",
"ùy": "uỳ",
"Ùy": "Uỳ",
"ÙY": "UỲ",
"úy": "uý",
"Úy": "Uý",
"ÚY": "UÝ",
"ủy": "uỷ",
"Ủy": "Uỷ",
"ỦY": "UỶ",
"ũy": "uỹ",
"Ũy": "Uỹ",
"ŨY": "UỸ",
"ụy": "uỵ",
"Ụy": "Uỵ",
"ỤY": "UỴ",
}
tokenizer_vi2en = AutoTokenizer.from_pretrained("vinai/vinai-translate-vi2en", src_lang="vi_VN")
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-vi2en")
def translate_vi2en(vi_text: str) -> str:
for i, j in dict_map.items():
vi_text = vi_text.replace(i, j)
input_ids = tokenizer_vi2en(vi_text, return_tensors="pt").input_ids
output_ids = model_vi2en.generate(
input_ids,
decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
num_return_sequences=1,
# # With sampling
# do_sample=True,
# top_k=100,
# top_p=0.8,
# With beam search
num_beams=5,
early_stopping=True
)
en_text = tokenizer_vi2en.batch_decode(output_ids, skip_special_tokens=True)
en_text = " ".join(en_text)
return en_text
tokenizer_en2vi = AutoTokenizer.from_pretrained("vinai/vinai-translate-en2vi", src_lang="en_XX")
model_en2vi = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-en2vi")
def translate_en2vi(en_text: str) -> str:
input_ids = tokenizer_en2vi(en_text, return_tensors="pt").input_ids
output_ids = model_en2vi.generate(
input_ids,
decoder_start_token_id=tokenizer_en2vi.lang_code_to_id["vi_VN"],
num_return_sequences=1,
# # With sampling
# do_sample=True,
# top_k=100,
# top_p=0.8,
# With beam search
num_beams=5,
early_stopping=True
)
vi_text = tokenizer_en2vi.batch_decode(output_ids, skip_special_tokens=True)
vi_text = " ".join(vi_text)
return vi_text