fzmnm commited on
Commit
1938b64
·
verified ·
1 Parent(s): 1b27df4

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +67 -64
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,64 +1,67 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient(model="https://w6zpj9tjouv19b9t.us-east-1.aws.endpoints.huggingface.cloud")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
3
+ import torch
4
+ from threading import Thread
5
+
6
+ model_name = "fzmnm/TinyStoriesAdv_v2_92M"
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name)
10
+ model.eval()
11
+
12
+ model.generation_config.pad_token_id = tokenizer.eos_token_id
13
+
14
+ max_tokens = 512
15
+
16
+ def build_input_str(message: str, history: 'list[list[str]]'):
17
+ history_str = ""
18
+ for entity in history:
19
+ if entity['role'] == 'user':
20
+ history_str += f"问:{entity['content']}\n\n"
21
+ elif entity['role'] == 'assistant':
22
+ history_str += f"答:{entity['content']}\n\n"
23
+ return history_str + f"问:{message}\n\n"
24
+
25
+ def stop_criteria(input_str):
26
+ return input_str.endswith("\n") and len(input_str.strip()) > 0
27
+
28
+ class StopOnTokens(StoppingCriteria):
29
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
30
+ input_str = tokenizer.decode(input_ids[0], skip_special_tokens=True)
31
+ return stop_criteria(input_str)
32
+
33
+ def chat(message, history):
34
+ input_str = build_input_str(message, history)
35
+ input_ids = tokenizer.encode(input_str, return_tensors="pt")
36
+ input_ids = input_ids[:, -max_tokens:]
37
+ streamer = TextIteratorStreamer(
38
+ tokenizer,
39
+ timeout=10,
40
+ skip_prompt=True,
41
+ skip_special_tokens=True)
42
+ stopping_criteria = StoppingCriteriaList([StopOnTokens()])
43
+ generate_kwargs = dict(
44
+ input_ids=input_ids,
45
+ streamer=streamer,
46
+ stopping_criteria=stopping_criteria,
47
+ max_new_tokens=512,
48
+ top_p=0.9,
49
+ do_sample=True,
50
+ temperature=0.7
51
+ )
52
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
53
+ t.start()
54
+
55
+ output_str = ""
56
+ for new_str in streamer:
57
+ output_str += new_str
58
+ yield output_str
59
+
60
+ app = gr.ChatInterface(
61
+ fn=chat,
62
+ type='messages',
63
+ examples=['什么是鹦鹉?', '什么是大象?', '谁是李白?', '什么是黑洞?'],
64
+ title='聊天机器人',
65
+ )
66
+
67
+ app.launch()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.25.2
 
 
 
1
+ huggingface_hub==0.25.2
2
+ transformers
3
+ gradio