Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +67 -64
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,64 +1,67 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
3 |
+
import torch
|
4 |
+
from threading import Thread
|
5 |
+
|
6 |
+
model_name = "fzmnm/TinyStoriesAdv_v2_92M"
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
model.generation_config.pad_token_id = tokenizer.eos_token_id
|
13 |
+
|
14 |
+
max_tokens = 512
|
15 |
+
|
16 |
+
def build_input_str(message: str, history: 'list[list[str]]'):
|
17 |
+
history_str = ""
|
18 |
+
for entity in history:
|
19 |
+
if entity['role'] == 'user':
|
20 |
+
history_str += f"问:{entity['content']}\n\n"
|
21 |
+
elif entity['role'] == 'assistant':
|
22 |
+
history_str += f"答:{entity['content']}\n\n"
|
23 |
+
return history_str + f"问:{message}\n\n"
|
24 |
+
|
25 |
+
def stop_criteria(input_str):
|
26 |
+
return input_str.endswith("\n") and len(input_str.strip()) > 0
|
27 |
+
|
28 |
+
class StopOnTokens(StoppingCriteria):
|
29 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
30 |
+
input_str = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
31 |
+
return stop_criteria(input_str)
|
32 |
+
|
33 |
+
def chat(message, history):
|
34 |
+
input_str = build_input_str(message, history)
|
35 |
+
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
36 |
+
input_ids = input_ids[:, -max_tokens:]
|
37 |
+
streamer = TextIteratorStreamer(
|
38 |
+
tokenizer,
|
39 |
+
timeout=10,
|
40 |
+
skip_prompt=True,
|
41 |
+
skip_special_tokens=True)
|
42 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
43 |
+
generate_kwargs = dict(
|
44 |
+
input_ids=input_ids,
|
45 |
+
streamer=streamer,
|
46 |
+
stopping_criteria=stopping_criteria,
|
47 |
+
max_new_tokens=512,
|
48 |
+
top_p=0.9,
|
49 |
+
do_sample=True,
|
50 |
+
temperature=0.7
|
51 |
+
)
|
52 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
53 |
+
t.start()
|
54 |
+
|
55 |
+
output_str = ""
|
56 |
+
for new_str in streamer:
|
57 |
+
output_str += new_str
|
58 |
+
yield output_str
|
59 |
+
|
60 |
+
app = gr.ChatInterface(
|
61 |
+
fn=chat,
|
62 |
+
type='messages',
|
63 |
+
examples=['什么是鹦鹉?', '什么是大象?', '谁是李白?', '什么是黑洞?'],
|
64 |
+
title='聊天机器人',
|
65 |
+
)
|
66 |
+
|
67 |
+
app.launch()
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
transformers
|
3 |
+
gradio
|