Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,79 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
3 |
-
import torch
|
4 |
-
from threading import Thread
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
model
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
return
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
def
|
34 |
-
input_str
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
)
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
app.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
3 |
+
import torch
|
4 |
+
from threading import Thread
|
5 |
+
|
6 |
+
import os; os.chdir(os.path.dirname(__file__))
|
7 |
+
|
8 |
+
# model_name = "./92M_low_kv_dropout_v3_hf"
|
9 |
+
model_name = "fzmnm/TinyStoriesAdv_v2_92M"
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
model.generation_config.pad_token_id = tokenizer.eos_token_id
|
16 |
+
|
17 |
+
max_tokens = 512
|
18 |
+
|
19 |
+
def build_input_str(message: str, history: 'list[list[str]]'):
|
20 |
+
history_str = ""
|
21 |
+
for entity in history:
|
22 |
+
if entity['role'] == 'user':
|
23 |
+
history_str += f"问:{entity['content']}\n\n"
|
24 |
+
elif entity['role'] == 'assistant':
|
25 |
+
history_str += f"答:{entity['content']}\n\n"
|
26 |
+
return history_str + f"问:{message}\n\n"
|
27 |
+
|
28 |
+
def stop_criteria(input_str):
|
29 |
+
# return input_str.endswith("\n") and len(input_str.strip()) > 0
|
30 |
+
input_str=input_str.replace(":",":")
|
31 |
+
return input_str.endswith("问:") or input_str.endswith("meta_tag:")
|
32 |
+
|
33 |
+
def remove_ending(input_str):
|
34 |
+
if input_str.replace(":",":").endswith("问:"):
|
35 |
+
return input_str[:-2]
|
36 |
+
if input_str.endswith("meta_tag:"):
|
37 |
+
return input_str[:-9]
|
38 |
+
return input_str
|
39 |
+
|
40 |
+
class StopOnTokens(StoppingCriteria):
|
41 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
42 |
+
input_str = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
43 |
+
return stop_criteria(input_str)
|
44 |
+
|
45 |
+
def chat(message, history):
|
46 |
+
input_str = build_input_str(message, history)
|
47 |
+
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
48 |
+
input_ids = input_ids[:, -max_tokens:]
|
49 |
+
streamer = TextIteratorStreamer(
|
50 |
+
tokenizer,
|
51 |
+
timeout=10,
|
52 |
+
skip_prompt=True,
|
53 |
+
skip_special_tokens=True)
|
54 |
+
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
55 |
+
generate_kwargs = dict(
|
56 |
+
input_ids=input_ids,
|
57 |
+
streamer=streamer,
|
58 |
+
stopping_criteria=stopping_criteria,
|
59 |
+
max_new_tokens=512,
|
60 |
+
top_p=0.9,
|
61 |
+
do_sample=True,
|
62 |
+
temperature=0.7
|
63 |
+
)
|
64 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
65 |
+
t.start()
|
66 |
+
|
67 |
+
output_str = ""
|
68 |
+
for new_str in streamer:
|
69 |
+
output_str += new_str
|
70 |
+
yield remove_ending(output_str)
|
71 |
+
|
72 |
+
app = gr.ChatInterface(
|
73 |
+
fn=chat,
|
74 |
+
type='messages',
|
75 |
+
examples=['什么是鹦鹉?', '什么是大象?', '谁是李白?', '什么是黑洞?'],
|
76 |
+
title='聊天机器人',
|
77 |
+
)
|
78 |
+
|
79 |
app.launch()
|