File size: 4,816 Bytes
68282f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from pathlib import Path
from typing import List, Dict, Tuple
import matplotlib.colors as mpl_colors

import pandas as pd
import seaborn as sns
import shinyswatch

import shiny.experimental as x
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui

sns.set_theme()

www_dir = Path(__file__).parent.resolve() / "www"

df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
species: List[str] = df["Species"].unique().tolist()
species.sort()

app_ui = x.ui.page_fillable(
    shinyswatch.theme.minty(),
    x.ui.layout_sidebar(
        x.ui.sidebar(
            # Artwork by @allison_horst
            ui.input_selectize(
                "xvar",
                "X variable",
                numeric_cols,
                selected="Bill Length (mm)",
            ),
            ui.input_selectize(
                "yvar",
                "Y variable",
                numeric_cols,
                selected="Bill Depth (mm)",
            ),
            ui.input_checkbox_group(
                "species", "Filter by species", species, selected=species
            ),
            ui.hr(),
            ui.input_switch("by_species", "Show species", value=True),
            ui.input_switch("show_margins", "Show marginal plots", value=True),
        ),
        ui.output_ui("value_boxes"),
        x.ui.output_plot("scatter", fill=True),
        ui.help_text(
            "Artwork by ",
            ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
            class_="text-end",
        ),
        fill=True,
        fillable=True,
    ),
)


def server(input: Inputs, output: Outputs, session: Session):
    @reactive.Calc
    def filtered_df() -> pd.DataFrame:
        """Returns a Pandas data frame that includes only the desired rows"""

        # This calculation "req"uires that at least one species is selected
        req(len(input.species()) > 0)

        # Filter the rows so we only include the desired species
        return df[df["Species"].isin(input.species())]

    @output
    @render.plot
    def scatter():
        """Generates a plot for Shiny to display to the user"""

        # The plotting function to use depends on whether margins are desired
        plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot

        plotfunc(
            data=filtered_df(),
            x=input.xvar(),
            y=input.yvar(),
            palette=palette,
            hue="Species" if input.by_species() else None,
            hue_order=species,
            legend=False,
        )

    @output
    @render.ui
    def value_boxes():
        df = filtered_df()

        def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
            return x.ui.value_box(
                title,
                count,
                {"class_": "pt-1 pb-0"},
                showcase=x.ui.bind_fill_role(
                    ui.tags.img(
                        {"style": "object-fit:contain;"},
                        src=showcase_img,
                    ),
                    item=True,
                ),
                theme_color=None,
                style=f"background-color: {bgcol};",
                height="90px",
                full_screen=True,
            )

        if not input.by_species():
            return penguin_value_box(
                "Penguins",
                len(df.index),
                bg_palette["default"],
                # Artwork by @allison_horst
                showcase_img="penguins.png",
            )

        value_boxes = [
            penguin_value_box(
                name,
                len(df[df["Species"] == name]),
                bg_palette[name],
                # Artwork by @allison_horst
                showcase_img=f"{name}.png",
            )
            for name in species
            # Only include boxes for _selected_ species
            if name in input.species()
        ]

        return x.ui.layout_column_wrap(1 / len(value_boxes), *value_boxes)


# "darkorange", "purple", "cyan4"
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]

palette: Dict[str, Tuple[float, float, float]] = {
    "Adelie": colors[0],
    "Chinstrap": colors[1],
    "Gentoo": colors[2],
    "default": sns.color_palette()[0],  # type: ignore
}

bg_palette = {}
# Use `sns.set_style("whitegrid")` to help find approx alpha value
for name, col in palette.items():
    # Adjusted n_colors until `axe` accessibility did not complain about color contrast
    bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1])  # type: ignore


app = App(
    app_ui,
    server,
    static_assets=str(www_dir),
)