vlmqa / app.py
gabrielaltay's picture
update model load
e3a3f96
raw
history blame
6.52 kB
import os
import tempfile
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.utils.colpali_processing_utils import process_images
from colpali_engine.utils.colpali_processing_utils import process_queries
import google.generativeai as genai
import numpy as np
import pdf2image
from PIL import Image
import requests
import streamlit as st
import torch
from torch.utils.data import DataLoader
from transformers import AutoProcessor
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SS = st.session_state
def initialize_session_state():
keys = [
"colpali_model",
"page_images",
"retrieved_page_images",
"response",
]
for key in keys:
if key not in SS:
SS[key] = None
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
return device
def get_dtype(device: torch.device):
if device == torch.device("cuda"):
dtype = torch.bfloat16
elif device == torch.device("mps"):
dtype = torch.float32
else:
dtype = torch.float32
return dtype
def load_colpali_model():
paligemma_model_name = "google/paligemma-3b-mix-448"
colpali_model_name = "vidore/colpali"
device = get_device()
dtype = get_dtype(device)
model = ColPali.from_pretrained(
paligemma_model_name,
torch_dtype=dtype,
token=st.secrets["hf_access_token"],
).eval()
model.load_adapter(colpali_model_name)
model.to(device)
processor = AutoProcessor.from_pretrained(colpali_model_name)
return model, processor
def embed_page_images(model, processor, page_images, batch_size=2):
dataloader = DataLoader(
page_images,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
page_embeddings = []
for batch in dataloader:
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
page_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
return np.array(page_embeddings)
def embed_query_texts(model, processor, query_texts, batch_size=1):
# 448 is from the paligemma resolution we loaded
dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
dataloader = DataLoader(
query_texts,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_queries(processor, x, dummy_image),
)
query_embeddings = []
for batch in dataloader:
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
query_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
return np.array(query_embeddings)[0]
def get_pdf_page_images_from_bytes(
pdf_bytes: bytes,
use_tmp_dir=False,
):
if use_tmp_dir:
with tempfile.TemporaryDirectory() as tmp_path:
page_images = pdf2image.convert_from_bytes(pdf_bytes, output_folder=tmp_path)
else:
page_images = pdf2image.convert_from_bytes(pdf_bytes)
return page_images
def get_pdf_bytes_from_url(url: str) -> bytes | None:
response = requests.get(url)
if response.status_code == 200:
return response.content
else:
print(f"failed to fetch {url}")
print(response)
return None
def display_pages(page_images, key):
n_cols = st.slider("ncol", min_value=1, max_value=8, value=4, step=1, key=key)
cols = st.columns(n_cols)
for ii_page, page_image in enumerate(page_images):
ii_col = ii_page % n_cols
with cols[ii_col]:
st.image(page_image)
initialize_session_state()
if SS["colpali_model"] is None:
SS["colpali_model"], SS["processor"] = load_colpali_model()
with st.sidebar:
url = st.text_input("arxiv url", "https://arxiv.org/pdf/2112.01488.pdf")
if st.button("load paper"):
pdf_bytes = get_pdf_bytes_from_url(url)
SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)
if st.button("embed pages"):
SS["page_embeddings"] = embed_page_images(
SS["colpali_model"],
SS["processor"],
SS["page_images"],
)
with st.container(border=True):
query = st.text_area("query")
top_k = st.slider("num pages to retrieve", min_value=1, max_value=8, value=3, step=1)
if st.button("answer query"):
SS["query_embeddings"] = embed_query_texts(
SS["colpali_model"],
SS["processor"],
[query],
)
page_query_scores = []
for ipage in range(len(SS["page_embeddings"])):
# for every query token find the max_sim with every page patch
patch_query_scores = np.dot(
SS['page_embeddings'][ipage],
SS["query_embeddings"].T,
)
max_sim_score = patch_query_scores.max(axis=0).sum()
page_query_scores.append(max_sim_score)
page_query_scores = np.array(page_query_scores)
i_ranked_pages = np.argsort(-page_query_scores)
page_images = []
for ii in range(top_k):
page_images.append(SS["page_images"][i_ranked_pages[ii]])
SS["retrieved_page_images"] = page_images
prompt = [
query +
" Think through your answer step by step. "
"Support your answer with descriptions of the images. "
"Do not infer information that is not in the images.",
] + page_images
genai.configure(api_key=st.secrets["google_genai_api_key"])
# genai_model_name = "gemini-1.5-flash"
genai_model_name = "gemini-1.5-pro"
gen_model = genai.GenerativeModel(
model_name=genai_model_name,
generation_config=genai.GenerationConfig(
temperature=0.1,
),
)
response = gen_model.generate_content(prompt)
text = response.candidates[0].content.parts[0].text
SS["response"] = text
if SS["response"] is not None:
st.write(SS["response"])
st.header("Retrieved Pages")
display_pages(SS["retrieved_page_images"], "retrieved_pages")
if SS["page_images"] is not None:
st.header("All PDF Pages")
display_pages(SS["page_images"], "all_pages")