Spaces:
Running
on
T4
Running
on
T4
""" | |
utils.py | |
Functions: | |
- get_script: Get the dialogue from the LLM. | |
- call_llm: Call the LLM with the given prompt and dialogue format. | |
- get_audio: Get the audio from the TTS model from HF Spaces. | |
""" | |
import os | |
import requests | |
from gradio_client import Client | |
from openai import OpenAI | |
from pydantic import ValidationError | |
from bark import SAMPLE_RATE, generate_audio, preload_models | |
from scipy.io.wavfile import write as write_wav | |
MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct" | |
JINA_URL = "https://r.jina.ai/" | |
client = OpenAI( | |
base_url="https://api.fireworks.ai/inference/v1", | |
api_key=os.getenv("FIREWORKS_API_KEY"), | |
) | |
# hf_client = Client("mrfakename/MeloTTS") | |
# download and load all models | |
preload_models() | |
def generate_script(system_prompt: str, input_text: str, output_model): | |
"""Get the dialogue from the LLM.""" | |
# Load as python object | |
try: | |
response = call_llm(system_prompt, input_text, output_model) | |
dialogue = output_model.model_validate_json(response.choices[0].message.content) | |
except ValidationError as e: | |
error_message = f"Failed to parse dialogue JSON: {e}" | |
system_prompt_with_error = f"{system_prompt}\n\nPlease return a VALID JSON object. This was the earlier error: {error_message}" | |
response = call_llm(system_prompt_with_error, input_text, output_model) | |
dialogue = output_model.model_validate_json(response.choices[0].message.content) | |
# Call the LLM again to improve the dialogue | |
system_prompt_with_dialogue = f"{system_prompt}\n\nHere is the first draft of the dialogue you provided:\n\n{dialogue}." | |
response = call_llm( | |
system_prompt_with_dialogue, "Please improve the dialogue.", output_model | |
) | |
improved_dialogue = output_model.model_validate_json( | |
response.choices[0].message.content | |
) | |
return improved_dialogue | |
def call_llm(system_prompt: str, text: str, dialogue_format): | |
"""Call the LLM with the given prompt and dialogue format.""" | |
response = client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": text}, | |
], | |
model=MODEL_ID, | |
max_tokens=16_384, | |
temperature=0.1, | |
response_format={ | |
"type": "json_object", | |
"schema": dialogue_format.model_json_schema(), | |
}, | |
) | |
return response | |
def parse_url(url: str) -> str: | |
"""Parse the given URL and return the text content.""" | |
full_url = f"{JINA_URL}{url}" | |
response = requests.get(full_url, timeout=60) | |
return response.text | |
def generate_audio(text: str, speaker: str, language: str) -> str: | |
audio_array = generate_audio(text, history_prompt=f"v2/{language}_speaker_{'1' if speaker == 'Host (Jane)' else '3'}") | |
file_path = f"audio_{language}_{speaker}.mp3" | |
# save audio to disk | |
write_wav(file_path, SAMPLE_RATE, audio_array) | |
return file_path | |
# """Get the audio from the TTS model from HF Spaces and adjust pitch if necessary.""" | |
# if speaker == "Guest": | |
# accent = "EN-US" if language == "EN" else language | |
# speed = 0.9 | |
# else: # host | |
# accent = "EN-Default" if language == "EN" else language | |
# speed = 1 | |
# if language != "EN" and speaker != "Guest": | |
# speed = 1.1 | |
# # Generate audio | |
# result = hf_client.predict( | |
# text=text, | |
# language=language, | |
# speaker=accent, | |
# speed=speed, | |
# api_name="/synthesize", | |
# ) | |
# return result | |