File size: 7,380 Bytes
e0a47a2
bc679dd
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a47a2
bc679dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import streamlit as st
import cv2
import sys
import argparse
import numpy as np
import json
import torch
import torch.nn.functional as F
import detectron2.data.transforms as T
import torchvision
from collections import OrderedDict
from scipy import spatial
import matplotlib.pyplot as plt


from detectron2.engine import DefaultPredictor
from detectron2.utils.visualizer import Visualizer
from detectron2.config import get_cfg
from detectron2 import model_zoo
from detectron2.data import Metadata
from detectron2.structures.boxes import Boxes
from detectron2.structures import Instances

from plots.plot_pca_point import plot_pca_point
from plots.plot_histogram_dist import plot_histogram_dist
from plots.plot_gradcam import plot_gradcam

def extract_features(model, img, box):
    height, width = img.shape[1:3]
    inputs = [{"image": img, "height": height, "width": width}]
    with torch.no_grad():
        img = model.preprocess_image(inputs) 
        features = model.backbone(img.tensor)
        features_ = [features[f] for f in model.roi_heads.box_in_features]

        box_features = model.roi_heads.box_pooler(features_, [box])

        output_features = F.avg_pool2d(box_features, [7, 7])
        output_features = output_features.view(-1, 256)

        return output_features

def forward_model_full(model, cfg, cv_img):
    height, width = cv_img.shape[:2]
    transform_gen = T.ResizeShortestEdge(
        [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
    )

    image = transform_gen.get_transform(cv_img).apply_image(cv_img)
    image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
    inputs = [{"image": image, "height": height, "width": width}]

    with torch.no_grad():
        images = model.preprocess_image(inputs)
        features = model.backbone(images.tensor) 
        proposals, _ = model.proposal_generator(images, features, None)

        features_ = [features[f] for f in model.roi_heads.box_in_features]
        
        box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
        box_head = model.roi_heads.box_head(box_features)
        predictions = model.roi_heads.box_predictor(box_head)
        
        output_features = F.avg_pool2d(box_features, [7, 7])
        output_features = output_features.view(-1, 256)

        probs = model.roi_heads.box_predictor.predict_probs(predictions, proposals)
        
        pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
        pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)

        pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes)
        
        instances = pred_instances[0]["instances"]

        instances.set("probs", probs[0][pred_inds])
        instances.set("features", output_features[pred_inds])
        
        return instances, cv_img


def load_model():
    cfg = get_cfg()

    cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
    cfg.MODEL.ROI_HEADS.NUM_CLASSES = 3
    cfg.MODEL.WEIGHTS = MODEL
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = TH


    metadata = Metadata()
    metadata.set(
        evaluator_type="coco",
        thing_classes=["neoplastic", "aphthous", "traumatic"],
        thing_dataset_id_to_contiguous_id={"1": 0, "2": 1, "3": 2}
    )

    predictor = DefaultPredictor(cfg)
    model = predictor.model

    return dict(
        predictor=predictor,
        model=model,
        metadata=metadata,
        cfg=cfg
    )




def compute_similarities(features, database):
    similarities = dict()
    dist_fn = getattr(spatial.distance, DISTANCE)
    for file_name, elems in  database.items():
        for elem in elems:
            similarities[file_name] = dict(
                dist=dist_fn(elem["features"], features),
                file_name=file_name,
                box=elem["roi"],
                type=elem["type"]
            )
    similarities = OrderedDict(sorted(similarities.items(), key=lambda e: e[1]["dist"]))
    return similarities


def draw_box(file_name, box, type, model, resize_input=False):
    height, width, channels = img.shape 
    
    pred_v = Visualizer(img[:, :, ::-1], model["metadata"], scale=1)
    instances = Instances((height, width), pred_boxes=Boxes(torch.tensor(box).unsqueeze(0)), pred_classes=torch.tensor([type]))
    pred_v = pred_v.draw_instance_predictions(instances)

    pred = pred_v.get_image()[:, :, ::-1]
    pred = cv2.resize(pred, (800, 800))

    return pred


def explain(img, model):
    database = json.load(open(FEATURES_DATABASE))
    instances, input = forward_model_full(model["model"], model["cfg"], img)
    
    instances.remove("pred_masks")
    
    pred_v = Visualizer(cv2.cvtColor(input, cv2.COLOR_BGR2RGB), model["metadata"], scale=1)
    pred_v = pred_v.draw_instance_predictions(instances.to("cpu"))

    pred = pred_v.get_image()[:, :, ::-1]
    pred = cv2.resize(pred, (800, 800))
    pred = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB)
    
    tabs = st.tabs(["Detection"] + [f"Lesion #{i}" for i in range(0, len(instances))])
    lesion_tabs = tabs[1:]

    with tabs[0]:
        st.header("Detected lesions")
        state.text("All done...")
        tooltip.success("Use the tabs for a detailed explanation of each lesion")
        st.image(pred)

    
    for i, (tab, box, type, scores, features) in enumerate(zip(lesion_tabs, instances.pred_boxes, instances.pred_classes, instances.probs, instances.features)):
        healthy_prob = scores[-1].item()
        scores = scores[:-1]
        features = features.tolist()

        with tab:
            st.header(f"Lesion #{i}")
            lesion_img = draw_box(img, box.cpu(), type, model)
            lesion_img = cv2.cvtColor(lesion_img, cv2.COLOR_BGR2RGB)

            classes = ["healty", "neoplastic", "aphthous", "traumatic"]
            y_pos = np.arange(len(classes))
            probs = [healthy_prob] + scores.cpu().numpy().tolist()

            probs_fig = plt.figure()
            plt.bar(y_pos, probs, align="center")
            plt.xticks(y_pos, classes)
            plt.ylabel("Probability")
            plt.title("Class")


            st.subheader("Classification")
            col1, col2 = st.columns(2)
            
            col1.image(lesion_img)
            col2.pyplot(probs_fig)

            st.subheader("Feature space")
            col1, col2 = st.columns(2)

            fig = plot_pca_point(point=features, features_database=FEATURES_DATABASE, pca_model=PCA_MODEL, fig_h=800, fig_w=600, fig_dpi=100)
            col1.pyplot(fig)

            fig = plot_histogram_dist(point=features, features_database=FEATURES_DATABASE, fig_h=800, fig_w=600, fig_dpi=100)
            col2.pyplot(fig)

            st.subheader("Gradcam++")
            fig = plot_gradcam(model=MODEL, file=FILE, instance=i, fig_h=1600, fig_w=1200, fig_dpi=200, th=TH, layer="backbone.bottom_up.res5.2.conv3")
            st.pyplot(fig)

FILE = "./test.jpg"
MODEL = "./models/model.pth"
PCA_MODEL = "./models/pca.pkl"
FEATURES_DATABASE = "./assets/features/features.json"

DISTANCE = "cosine"
TH = 0.5

state = st.empty()
tooltip = st.empty()

state.write("Loading model...")
model = load_model()

img = cv2.imread(FILE)
img = cv2.resize(img, (800, 800))
explain(img, model)