Spaces:
Sleeping
Sleeping
File size: 7,380 Bytes
e0a47a2 bc679dd e0a47a2 bc679dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import streamlit as st
import cv2
import sys
import argparse
import numpy as np
import json
import torch
import torch.nn.functional as F
import detectron2.data.transforms as T
import torchvision
from collections import OrderedDict
from scipy import spatial
import matplotlib.pyplot as plt
from detectron2.engine import DefaultPredictor
from detectron2.utils.visualizer import Visualizer
from detectron2.config import get_cfg
from detectron2 import model_zoo
from detectron2.data import Metadata
from detectron2.structures.boxes import Boxes
from detectron2.structures import Instances
from plots.plot_pca_point import plot_pca_point
from plots.plot_histogram_dist import plot_histogram_dist
from plots.plot_gradcam import plot_gradcam
def extract_features(model, img, box):
height, width = img.shape[1:3]
inputs = [{"image": img, "height": height, "width": width}]
with torch.no_grad():
img = model.preprocess_image(inputs)
features = model.backbone(img.tensor)
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [box])
output_features = F.avg_pool2d(box_features, [7, 7])
output_features = output_features.view(-1, 256)
return output_features
def forward_model_full(model, cfg, cv_img):
height, width = cv_img.shape[:2]
transform_gen = T.ResizeShortestEdge(
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
)
image = transform_gen.get_transform(cv_img).apply_image(cv_img)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = [{"image": image, "height": height, "width": width}]
with torch.no_grad():
images = model.preprocess_image(inputs)
features = model.backbone(images.tensor)
proposals, _ = model.proposal_generator(images, features, None)
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
box_head = model.roi_heads.box_head(box_features)
predictions = model.roi_heads.box_predictor(box_head)
output_features = F.avg_pool2d(box_features, [7, 7])
output_features = output_features.view(-1, 256)
probs = model.roi_heads.box_predictor.predict_probs(predictions, proposals)
pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)
pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes)
instances = pred_instances[0]["instances"]
instances.set("probs", probs[0][pred_inds])
instances.set("features", output_features[pred_inds])
return instances, cv_img
def load_model():
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 3
cfg.MODEL.WEIGHTS = MODEL
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = TH
metadata = Metadata()
metadata.set(
evaluator_type="coco",
thing_classes=["neoplastic", "aphthous", "traumatic"],
thing_dataset_id_to_contiguous_id={"1": 0, "2": 1, "3": 2}
)
predictor = DefaultPredictor(cfg)
model = predictor.model
return dict(
predictor=predictor,
model=model,
metadata=metadata,
cfg=cfg
)
def compute_similarities(features, database):
similarities = dict()
dist_fn = getattr(spatial.distance, DISTANCE)
for file_name, elems in database.items():
for elem in elems:
similarities[file_name] = dict(
dist=dist_fn(elem["features"], features),
file_name=file_name,
box=elem["roi"],
type=elem["type"]
)
similarities = OrderedDict(sorted(similarities.items(), key=lambda e: e[1]["dist"]))
return similarities
def draw_box(file_name, box, type, model, resize_input=False):
height, width, channels = img.shape
pred_v = Visualizer(img[:, :, ::-1], model["metadata"], scale=1)
instances = Instances((height, width), pred_boxes=Boxes(torch.tensor(box).unsqueeze(0)), pred_classes=torch.tensor([type]))
pred_v = pred_v.draw_instance_predictions(instances)
pred = pred_v.get_image()[:, :, ::-1]
pred = cv2.resize(pred, (800, 800))
return pred
def explain(img, model):
database = json.load(open(FEATURES_DATABASE))
instances, input = forward_model_full(model["model"], model["cfg"], img)
instances.remove("pred_masks")
pred_v = Visualizer(cv2.cvtColor(input, cv2.COLOR_BGR2RGB), model["metadata"], scale=1)
pred_v = pred_v.draw_instance_predictions(instances.to("cpu"))
pred = pred_v.get_image()[:, :, ::-1]
pred = cv2.resize(pred, (800, 800))
pred = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB)
tabs = st.tabs(["Detection"] + [f"Lesion #{i}" for i in range(0, len(instances))])
lesion_tabs = tabs[1:]
with tabs[0]:
st.header("Detected lesions")
state.text("All done...")
tooltip.success("Use the tabs for a detailed explanation of each lesion")
st.image(pred)
for i, (tab, box, type, scores, features) in enumerate(zip(lesion_tabs, instances.pred_boxes, instances.pred_classes, instances.probs, instances.features)):
healthy_prob = scores[-1].item()
scores = scores[:-1]
features = features.tolist()
with tab:
st.header(f"Lesion #{i}")
lesion_img = draw_box(img, box.cpu(), type, model)
lesion_img = cv2.cvtColor(lesion_img, cv2.COLOR_BGR2RGB)
classes = ["healty", "neoplastic", "aphthous", "traumatic"]
y_pos = np.arange(len(classes))
probs = [healthy_prob] + scores.cpu().numpy().tolist()
probs_fig = plt.figure()
plt.bar(y_pos, probs, align="center")
plt.xticks(y_pos, classes)
plt.ylabel("Probability")
plt.title("Class")
st.subheader("Classification")
col1, col2 = st.columns(2)
col1.image(lesion_img)
col2.pyplot(probs_fig)
st.subheader("Feature space")
col1, col2 = st.columns(2)
fig = plot_pca_point(point=features, features_database=FEATURES_DATABASE, pca_model=PCA_MODEL, fig_h=800, fig_w=600, fig_dpi=100)
col1.pyplot(fig)
fig = plot_histogram_dist(point=features, features_database=FEATURES_DATABASE, fig_h=800, fig_w=600, fig_dpi=100)
col2.pyplot(fig)
st.subheader("Gradcam++")
fig = plot_gradcam(model=MODEL, file=FILE, instance=i, fig_h=1600, fig_w=1200, fig_dpi=200, th=TH, layer="backbone.bottom_up.res5.2.conv3")
st.pyplot(fig)
FILE = "./test.jpg"
MODEL = "./models/model.pth"
PCA_MODEL = "./models/pca.pkl"
FEATURES_DATABASE = "./assets/features/features.json"
DISTANCE = "cosine"
TH = 0.5
state = st.empty()
tooltip = st.empty()
state.write("Loading model...")
model = load_model()
img = cv2.imread(FILE)
img = cv2.resize(img, (800, 800))
explain(img, model) |