Federico Galatolo
missing fix gradcam without file
6e5a614
raw
history blame
8.24 kB
import os
import streamlit as st
import cv2
import sys
import argparse
import numpy as np
import json
import torch
import torch.nn.functional as F
import detectron2.data.transforms as T
import torchvision
from collections import OrderedDict
from scipy import spatial
import matplotlib.pyplot as plt
from packaging import version
from detectron2.engine import DefaultPredictor
from detectron2.utils.visualizer import Visualizer
from detectron2.config import get_cfg
from detectron2 import model_zoo
from detectron2.data import Metadata
from detectron2.structures.boxes import Boxes
from detectron2.structures import Instances
from plots.plot_pca_point import plot_pca_point
from plots.plot_histogram_dist import plot_histogram_dist
from plots.plot_gradcam import plot_gradcam
def extract_features(model, img, box):
height, width = img.shape[1:3]
inputs = [{"image": img, "height": height, "width": width}]
with torch.no_grad():
img = model.preprocess_image(inputs)
features = model.backbone(img.tensor)
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [box])
output_features = F.avg_pool2d(box_features, [7, 7])
output_features = output_features.view(-1, 256)
return output_features
def forward_model_full(model, cfg, cv_img):
height, width = cv_img.shape[:2]
transform_gen = T.ResizeShortestEdge(
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
)
image = transform_gen.get_transform(cv_img).apply_image(cv_img)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = [{"image": image, "height": height, "width": width}]
with torch.no_grad():
images = model.preprocess_image(inputs)
features = model.backbone(images.tensor)
proposals, _ = model.proposal_generator(images, features, None)
features_ = [features[f] for f in model.roi_heads.box_in_features]
box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
box_head = model.roi_heads.box_head(box_features)
predictions = model.roi_heads.box_predictor(box_head)
output_features = F.avg_pool2d(box_features, [7, 7])
output_features = output_features.view(-1, 256)
probs = model.roi_heads.box_predictor.predict_probs(predictions, proposals)
pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)
pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes)
instances = pred_instances[0]["instances"]
instances.set("probs", probs[0][pred_inds])
instances.set("features", output_features[pred_inds])
return instances, cv_img
def load_model():
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 3
cfg.MODEL.WEIGHTS = MODEL
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = TH
cfg.MODEL.DEVICE = "cpu"
metadata = Metadata()
metadata.set(
evaluator_type="coco",
thing_classes=["neoplastic", "aphthous", "traumatic"],
thing_dataset_id_to_contiguous_id={"1": 0, "2": 1, "3": 2}
)
predictor = DefaultPredictor(cfg)
model = predictor.model
return dict(
predictor=predictor,
model=model,
metadata=metadata,
cfg=cfg
)
def draw_box(file_name, box, type, model, resize_input=False):
height, width, channels = img.shape
pred_v = Visualizer(img[:, :, ::-1], model["metadata"], scale=1)
instances = Instances((height, width), pred_boxes=Boxes(torch.tensor(box).unsqueeze(0)), pred_classes=torch.tensor([type]))
pred_v = pred_v.draw_instance_predictions(instances)
pred = pred_v.get_image()[:, :, ::-1]
pred = cv2.resize(pred, (800, 800))
return pred
def explain(img, model):
state.write("Loading features...")
database = json.load(open(FEATURES_DATABASE))
state.write("Computing logits...")
instances, input = forward_model_full(model["model"], model["cfg"], img)
instances.remove("pred_masks")
pred_v = Visualizer(cv2.cvtColor(input, cv2.COLOR_BGR2RGB), model["metadata"], scale=1)
pred_v = pred_v.draw_instance_predictions(instances.to("cpu"))
pred = pred_v.get_image()[:, :, ::-1]
pred = cv2.resize(pred, (800, 800))
pred = cv2.cvtColor(pred, cv2.COLOR_BGR2RGB)
if version.parse(st.__version__) >= version.parse("1.11.0"):
tabs = st.tabs(["Result", "Detection"] + [f"Lesion #{i}" for i in range(0, len(instances))])
lesion_tabs = tabs[2:]
detection_tab = tabs[1]
with tabs[0]:
st.header("Image processed")
st.success("Use the tabs on the right to see the detected lesions and detailed explanations for each lesion")
else:
tabs = [st.container() for i in range(0, len(instances)+1)]
lesion_tabs = tabs[1:]
detection_tab = tabs[0]
state.write("Populating first tab...")
with detection_tab:
st.header("Detected lesions")
st.image(pred)
for i, (tab, box, type, scores, features) in enumerate(zip(lesion_tabs, instances.pred_boxes, instances.pred_classes, instances.probs, instances.features)):
state.write(f"Populating tab for lesion #{i}...")
healthy_prob = scores[-1].item()
scores = scores[:-1]
features = features.tolist()
with tab:
st.header(f"Lesion #{i}")
state.write(f"Populating classes for lesion #{i}...")
lesion_img = draw_box(img, box.cpu(), type, model)
lesion_img = cv2.cvtColor(lesion_img, cv2.COLOR_BGR2RGB)
classes = ["healty", "neoplastic", "aphthous", "traumatic"]
y_pos = np.arange(len(classes))
probs = [healthy_prob] + scores.cpu().numpy().tolist()
probs_fig = plt.figure()
plt.bar(y_pos, probs, align="center")
plt.xticks(y_pos, classes)
plt.ylabel("Probability")
plt.title("Class")
st.subheader("Classification")
col1, col2 = st.columns(2)
col1.image(lesion_img)
col2.pyplot(probs_fig)
st.subheader("Feature space")
col1, col2 = st.columns(2)
state.write(f"Populating PCA for lesion #{i}...")
fig = plot_pca_point(point=features, features_database=FEATURES_DATABASE, pca_model=PCA_MODEL, fig_h=800, fig_w=600, fig_dpi=100)
col1.pyplot(fig)
state.write(f"Populating histogram for lesion #{i}...")
fig = plot_histogram_dist(point=features, features_database=FEATURES_DATABASE, fig_h=800, fig_w=600, fig_dpi=100)
col2.pyplot(fig)
state.write(f"Populating Gradcam++ for lesion #{i}...")
st.subheader("Gradcam++")
fig = plot_gradcam(model=MODEL, file=FILE, instance=i, fig_h=1600, fig_w=1200, fig_dpi=200, th=TH, layer="backbone.bottom_up.res5.2.conv3")
st.pyplot(fig)
state.write("All done...")
FILE = "./test.jpg"
MODEL = "./models/model.pth"
PCA_MODEL = "./models/pca.pkl"
FEATURES_DATABASE = "./assets/features/features.json"
st.header("Explainable oral lesion detection")
st.markdown("""Demo for the paper [Explainable diagnosis of oral cancer via deep learning and case-based reasoning](https://mlpi.ing.unipi.it/doctoralai/)
Upload an image using the form below and click on "Process"
""")
FILE = st.file_uploader("Image", type=["jpg", "jpeg", "png"])
TH = st.slider("Threshold", min_value=0.0, max_value=1.0, value=0.5)
process = st.button("Process")
state = st.empty()
if process:
state.write("Loading model...")
model = load_model()
nparr = np.fromstring(FILE.getvalue(), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
#img = cv2.imread(FILE)
img = cv2.resize(img, (800, 800))
explain(img, model)