import os import streamlit as st from elasticsearch import Elasticsearch import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.manifold import TSNE import plotly.express as plx def compare(): if len(multiselect) == 0: plot_placeholder.error("Select at least one document") return target_field = f"{model}_features" ids = [documents[title] for title in multiselect] status_indicator.write("Retrieving embeddings...") results = [] for id in ids: results.append(es.search( index="sentences", query={ "constant_score" : { "filter" : { "term" : { "document": id } } } }, size=limit )) status_indicator.write("Merging embeddings...") features = [] classes = [] sentences = [] for result, title in zip(results, multiselect): features.append(np.asarray([sent["_source"][target_field] for sent in result["hits"]["hits"]])) classes.extend([title]*len(result["hits"]["hits"])) sentences.extend([sent["_source"]["sentence"] for sent in result["hits"]["hits"]]) features = np.concatenate(features) status_indicator.write("Computing TSNE...") scaler = StandardScaler() features = scaler.fit_transform(features) tsne = TSNE(n_components=2, metric="cosine", init="pca") features = tsne.fit_transform(features) classes = [c[:10]+"..." for c in classes] df = pd.DataFrame.from_dict(dict( x=features[:, 0], y=features[:, 1], classes=classes, sentences=sentences )) status_indicator.write("All done...") plot_placeholder.plotly_chart(plx.scatter( data_frame=df, x="x", y="y", color="classes", hover_name="sentences" )) es = Elasticsearch(os.environ["ELASTIC_HOST"], basic_auth=os.environ["ELASTIC_AUTH"].split(":")) results = es.search(index="documents", query={"match_all":{}}) results = [result["_source"] for result in results["hits"]["hits"]] documents = {f"{result['title']} - {result['author']}": result['id'] for result in results} st.sidebar.header("Semantic compare") st.sidebar.write("Select documents from the SERICA library to semantically compare them. Hover above the data points to see the respective sentences") multiselect = st.sidebar.multiselect("Documents", list(documents.keys())) model = st.sidebar.selectbox("Model", ["LaBSE"]) limit = st.sidebar.number_input("Sentences per document", 1000) plot_placeholder = st.empty() status_indicator = st.sidebar.empty() if st.sidebar.button("Compare"): compare()