Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,349 Bytes
d65c9b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from dataclasses import dataclass
from pathlib import Path
from typing import NamedTuple
from src.eunms import Model_Type, Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type
@dataclass
class RunConfig:
model_type : Model_Type = Model_Type.SDXL_Turbo
scheduler_type : Scheduler_Type = Scheduler_Type.EULER
prompt: str = ""
num_inference_steps: int = 4
num_inversion_steps: int = 100
opt_lr: float = 0.1
opt_iters: int = 0
opt_none_inference_steps: bool = False
guidance_scale: float = 0.0
# pipe_inversion: DiffusionPipeline = None
# pipe_inference: DiffusionPipeline = None
save_gpu_mem: bool = False
do_reconstruction: bool = True
loss_kl_lambda: float = 10.0
max_num_aprox_steps_first_step: int = 1
num_aprox_steps: int = 10
inversion_max_step: float = 1.0
gradient_averaging_type: Gradient_Averaging_Type = Gradient_Averaging_Type.NONE
gradient_averaging_first_step_range: tuple = (0, 10)
gradient_averaging_step_range: tuple = (0, 10)
noise_friendly_inversion: bool = False
update_epsilon_type: Epsilon_Update_Type = Gradient_Averaging_Type.NONE
#pip2pip zero
lambda_ac: float = 20.0
lambda_kl: float = 20.0
num_reg_steps: int = 5
num_ac_rolls: int = 5
def __post_init__(self):
pass |