File size: 49,513 Bytes
028694a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
from typing import Callable, Union
from torch import Tensor
import torch
import os

import comfy.ops
import comfy.utils
import comfy.model_management
import comfy.model_detection
import comfy.controlnet as comfy_cn
from comfy.controlnet import ControlBase, ControlNet, ControlLora, T2IAdapter, StrengthType
from comfy.model_patcher import ModelPatcher

from .control_sparsectrl import SparseModelPatcher, SparseControlNet, SparseCtrlMotionWrapper, SparseSettings, SparseConst
from .control_lllite import LLLiteModule, LLLitePatch, load_controllllite
from .control_svd import svd_unet_config_from_diffusers_unet, SVDControlNet, svd_unet_to_diffusers
from .utils import (AdvancedControlBase, TimestepKeyframeGroup, LatentKeyframeGroup, AbstractPreprocWrapper, ControlWeightType, ControlWeights, WeightTypeException,
                    manual_cast_clean_groupnorm, disable_weight_init_clean_groupnorm, prepare_mask_batch, get_properly_arranged_t2i_weights, load_torch_file_with_dict_factory,
                    broadcast_image_to_extend, extend_to_batch_size, ORIG_PREVIOUS_CONTROLNET, CONTROL_INIT_BY_ACN)
from .logger import logger


class ControlNetAdvanced(ControlNet, AdvancedControlBase):
    def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT):
        super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, compression_ratio=compression_ratio, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
        self.is_flux = False
        self.x_noisy_shape = None

    def get_universal_weights(self) -> ControlWeights:
        def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
            if key == "middle":
                return 1.0
            c_len = len(control[key])
            raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)]
            raw_weights = raw_weights[:-1]
            if key == "input":
                raw_weights.reverse()
            return raw_weights[idx]
        return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func)

    def get_control_advanced(self, x_noisy, t, cond, batched_number):
        # perform special version of get_control that supports sliding context and masks
        return self.sliding_get_control(x_noisy, t, cond, batched_number)

    def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number):
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return None

        dtype = self.control_model.dtype
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype

        # make cond_hint appropriate dimensions
        # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
        if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
            compression_ratio = self.compression_ratio
            if self.vae is not None:
                compression_ratio *= self.vae.downscale_ratio
            # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
            if self.sub_idxs is not None:
                actual_cond_hint_orig = self.cond_hint_original
                if self.cond_hint_original.size(0) < self.full_latent_length:
                    actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
                self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
            else:
                self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
            if self.vae is not None:
                loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
                self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
                comfy.model_management.load_models_gpu(loaded_models)
            if self.latent_format is not None:
                self.cond_hint = self.latent_format.process_in(self.cond_hint)
            self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)

        # prepare mask_cond_hint
        self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)

        context = cond.get('crossattn_controlnet', cond['c_crossattn'])
        extra = self.extra_args.copy()
        for c in self.extra_conds:
            temp = cond.get(c, None)
            if temp is not None:
                extra[c] = temp.to(dtype)

        timestep = self.model_sampling_current.timestep(t)
        x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
        self.x_noisy_shape = x_noisy.shape
        control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
        return self.control_merge(control, control_prev, output_dtype=None)

    def pre_run_advanced(self, *args, **kwargs):
        self.is_flux = "Flux" in str(type(self.control_model).__name__)
        return super().pre_run_advanced(*args, **kwargs)

    def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, flux_shape=None):
        if self.is_flux:
            flux_shape = self.x_noisy_shape
        return super().apply_advanced_strengths_and_masks(x, batched_number, flux_shape)

    def copy(self):
        c = ControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
        c.control_model = self.control_model
        c.control_model_wrapped = self.control_model_wrapped
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c
    
    def cleanup_advanced(self):
        self.x_noisy_shape = None
        return super().cleanup_advanced()

    @staticmethod
    def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlNetAdvanced':
        to_return = ControlNetAdvanced(control_model=v.control_model, timestep_keyframes=timestep_keyframe,
                                  global_average_pooling=v.global_average_pooling, compression_ratio=v.compression_ratio, latent_format=v.latent_format, load_device=v.load_device,
                                  manual_cast_dtype=v.manual_cast_dtype)
        v.copy_to(to_return)
        return to_return


class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase):
    def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, compression_ratio=8, upscale_algorithm="nearest_exact", device=None):
        super().__init__(t2i_model=t2i_model, channels_in=channels_in, compression_ratio=compression_ratio, upscale_algorithm=upscale_algorithm, device=device)
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter())

    def control_merge_inject(self, control: dict[str, list[Tensor]], control_prev, output_dtype):
        # match batch_size
        # TODO: make this more efficient by modifying the cached self.control_input val instead of doing this every step
        for key in control:
            control_current = control[key]
            for i in range(len(control_current)):
                x = control_current[i]
                if x is not None and x.size(0) == 1 and x.size(0) != self.batch_size:
                    control_current[i] = x.repeat(self.batch_size, 1, 1, 1)[:self.batch_size]
        return AdvancedControlBase.control_merge_inject(self, control, control_prev, output_dtype)

    def get_universal_weights(self) -> ControlWeights:
        def t2i_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
            if key == "middle":
                return 1.0
            c_len = 8 #len(control[key])
            raw_weights = [(self.weights.base_multiplier ** float((c_len-1) - i)) for i in range(c_len)]
            raw_weights = [raw_weights[-c_len], raw_weights[-3], raw_weights[-2], raw_weights[-1]]
            raw_weights = get_properly_arranged_t2i_weights(raw_weights)
            if key == "input":
                raw_weights.reverse()
            return raw_weights[idx]
        return self.weights.copy_with_new_weights(new_weight_func=t2i_weights_func)

    def get_calc_pow(self, idx: int, control: dict[str, list[Tensor]], key: str) -> int:
        if key == "middle":
            return 0
        # match how T2IAdapterAdvanced deals with universal weights
        c_len = 8 #len(control[key])
        indeces = [(c_len-1) - i for i in range(c_len)]
        indeces = [indeces[-c_len], indeces[-3], indeces[-2], indeces[-1]]
        indeces = get_properly_arranged_t2i_weights(indeces)
        if key == "input":
            indeces.reverse()  # need to reverse to match recent ComfyUI changes
        return indeces[idx]

    def get_control_advanced(self, x_noisy, t, cond, batched_number):
        try:
            # if sub indexes present, replace original hint with subsection
            if self.sub_idxs is not None:
                # cond hints
                full_cond_hint_original = self.cond_hint_original
                actual_cond_hint_orig = full_cond_hint_original
                del self.cond_hint
                self.cond_hint = None
                if full_cond_hint_original.size(0) < self.full_latent_length:
                    actual_cond_hint_orig = extend_to_batch_size(tensor=full_cond_hint_original, batch_size=full_cond_hint_original.size(0))
                self.cond_hint_original = actual_cond_hint_orig[self.sub_idxs]
            # mask hints
            self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
            return super().get_control(x_noisy, t, cond, batched_number)
        finally:
            if self.sub_idxs is not None:
                # replace original cond hint
                self.cond_hint_original = full_cond_hint_original
                del full_cond_hint_original

    def copy(self):
        c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in, self.compression_ratio, self.upscale_algorithm)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c
    
    def cleanup(self):
        super().cleanup()
        self.cleanup_advanced()

    @staticmethod
    def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced':
        to_return = T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in,
                                  compression_ratio=v.compression_ratio, upscale_algorithm=v.upscale_algorithm, device=v.device)
        v.copy_to(to_return)
        return to_return


class ControlLoraAdvanced(ControlLora, AdvancedControlBase):
    def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False):
        super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling)
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora())
        # use some functions from ControlNetAdvanced
        self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self))
        self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self))
    
    def get_universal_weights(self) -> ControlWeights:
        raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)]
        return self.weights.copy_with_new_weights(raw_weights)

    def copy(self):
        c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c
    
    def cleanup(self):
        super().cleanup()
        self.cleanup_advanced()

    @staticmethod
    def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced':
        to_return = ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe,
                                   global_average_pooling=v.global_average_pooling)
        v.copy_to(to_return)
        return to_return


class SVDControlNetAdvanced(ControlNetAdvanced):
    def __init__(self, control_model: SVDControlNet, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
        super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)

    def set_cond_hint_inject(self, *args, **kwargs):
        to_return = super().set_cond_hint_inject(*args, **kwargs)
        # cond hint for SVD-ControlNet needs to be scaled between (-1, 1) instead of (0, 1)
        self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
        return to_return

    def get_control_advanced(self, x_noisy, t, cond, batched_number):
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return None

        dtype = self.control_model.dtype
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype

        output_dtype = x_noisy.dtype
        # make cond_hint appropriate dimensions
        # TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
        if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
            # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
            if self.sub_idxs is not None:
                actual_cond_hint_orig = self.cond_hint_original
                if self.cond_hint_original.size(0) < self.full_latent_length:
                    actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
                self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
            else:
                self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)

        # prepare mask_cond_hint
        self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)

        context = cond.get('crossattn_controlnet', cond['c_crossattn'])
        # uses 'y' in new ComfyUI update
        y = cond.get('y', None)
        if y is not None:
            y = y.to(dtype)
        timestep = self.model_sampling_current.timestep(t)
        x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
        # concat c_concat if exists (should exist for SVD), doubling channels to 8
        if cond.get('c_concat', None) is not None:
            x_noisy = torch.cat([x_noisy] + [cond['c_concat']], dim=1)

        control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, cond=cond)
        return self.control_merge(control, control_prev, output_dtype)

    def copy(self):
        c = SVDControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c


class SparseCtrlAdvanced(ControlNetAdvanced):
    def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, sparse_settings: SparseSettings=None, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
        super().__init__(control_model=control_model, timestep_keyframes=timestep_keyframes, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
        self.control_model_wrapped = SparseModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
        self.add_compatible_weight(ControlWeightType.SPARSECTRL)
        self.control_model: SparseControlNet = self.control_model  # does nothing except help with IDE hints
        if self.control_model.use_simplified_conditioning_embedding:
            # TODO: allow vae_optional to be used instead of preprocessor
            #self.require_vae = True
            self.allow_condhint_latents = True
        self.sparse_settings = sparse_settings if sparse_settings is not None else SparseSettings.default()
        self.model_latent_format = None  # latent format for active SD model, NOT controlnet
        self.preprocessed = False
    
    def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
        # normal ControlNet stuff
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
                    return None

        dtype = self.control_model.dtype
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype
        output_dtype = x_noisy.dtype
        # set actual input length on motion model
        actual_length = x_noisy.size(0)//batched_number
        full_length = actual_length if self.sub_idxs is None else self.full_latent_length
        self.control_model.set_actual_length(actual_length=actual_length, full_length=full_length)
        # prepare cond_hint, if needed
        dim_mult = 1 if self.control_model.use_simplified_conditioning_embedding else 8
        if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2]*dim_mult != self.cond_hint.shape[2] or x_noisy.shape[3]*dim_mult != self.cond_hint.shape[3]:
            # clear out cond_hint and conditioning_mask
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
            # first, figure out which cond idxs are relevant, and where they fit in
            cond_idxs, hint_order  = self.sparse_settings.sparse_method.get_indexes(hint_length=self.cond_hint_original.size(0), full_length=full_length,
                                                                                     sub_idxs=self.sub_idxs if self.sparse_settings.is_context_aware() else None)
            range_idxs = list(range(full_length)) if self.sub_idxs is None else self.sub_idxs
            hint_idxs = [] # idxs in cond_idxs
            local_idxs = []  # idx to put in final cond_hint
            for i,cond_idx in enumerate(cond_idxs):
                if cond_idx in range_idxs:
                    hint_idxs.append(i)
                    local_idxs.append(range_idxs.index(cond_idx))
            # log_string = f"cond_idxs: {cond_idxs}, local_idxs: {local_idxs}, hint_idxs: {hint_idxs}, hint_order: {hint_order}"
            # if self.sub_idxs is not None:
            #     log_string += f" sub_idxs: {self.sub_idxs[0]}-{self.sub_idxs[-1]}"
            # logger.warn(log_string)
            # determine cond/uncond indexes that will get masked
            self.local_sparse_idxs = []
            self.local_sparse_idxs_inverse = list(range(x_noisy.size(0)))
            for batch_idx in range(batched_number):
                for i in local_idxs:
                    actual_i = i+(batch_idx*actual_length)
                    self.local_sparse_idxs.append(actual_i)
                    if actual_i in self.local_sparse_idxs_inverse:
                        self.local_sparse_idxs_inverse.remove(actual_i)
            # sub_cond_hint now contains the hints relevant to current x_noisy
            if hint_order is None:
                sub_cond_hint = self.cond_hint_original[hint_idxs].to(dtype).to(x_noisy.device)
            else:
                sub_cond_hint = self.cond_hint_original[hint_order][hint_idxs].to(dtype).to(x_noisy.device)
            # scale cond_hints to match noisy input
            if self.control_model.use_simplified_conditioning_embedding:
                # RGB SparseCtrl; the inputs are latents - use bilinear to avoid blocky artifacts
                sub_cond_hint = self.model_latent_format.process_in(sub_cond_hint)  # multiplies by model scale factor
                sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3], x_noisy.shape[2], "nearest-exact", "center").to(dtype).to(x_noisy.device)
            else:
                # other SparseCtrl; inputs are typical images
                sub_cond_hint = comfy.utils.common_upscale(sub_cond_hint, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
            # prepare cond_hint (b, c, h ,w)
            cond_shape = list(sub_cond_hint.shape)
            cond_shape[0] = len(range_idxs)
            self.cond_hint = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
            self.cond_hint[local_idxs] = sub_cond_hint[:]
            # prepare cond_mask (b, 1, h, w)
            cond_shape[1] = 1
            cond_mask = torch.zeros(cond_shape).to(dtype).to(x_noisy.device)
            cond_mask[local_idxs] = self.sparse_settings.sparse_mask_mult * self.weights.extras.get(SparseConst.MASK_MULT, 1.0)
            # combine cond_hint and cond_mask into (b, c+1, h, w)
            if not self.sparse_settings.merged:
                self.cond_hint = torch.cat([self.cond_hint, cond_mask], dim=1)
            del sub_cond_hint
            del cond_mask
        # make cond_hint match x_noisy batch
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)

        # prepare mask_cond_hint
        self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)

        context = cond['c_crossattn']
        y = cond.get('y', None)
        if y is not None:
            y = y.to(dtype)
        timestep = self.model_sampling_current.timestep(t)
        x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)

        control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
        return self.control_merge(control, control_prev, output_dtype)

    def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int, *args, **kwargs):
        # apply mults to indexes with and without a direct condhint
        x[self.local_sparse_idxs] *= self.sparse_settings.sparse_hint_mult * self.weights.extras.get(SparseConst.HINT_MULT, 1.0)
        x[self.local_sparse_idxs_inverse] *= self.sparse_settings.sparse_nonhint_mult * self.weights.extras.get(SparseConst.NONHINT_MULT, 1.0)
        return super().apply_advanced_strengths_and_masks(x, batched_number, *args, **kwargs)

    def pre_run_advanced(self, model, percent_to_timestep_function):
        super().pre_run_advanced(model, percent_to_timestep_function)
        if isinstance(self.cond_hint_original, AbstractPreprocWrapper):
            if not self.control_model.use_simplified_conditioning_embedding:
                raise ValueError("Any model besides RGB SparseCtrl should NOT have its images go through the RGB SparseCtrl preprocessor.")
            self.cond_hint_original = self.cond_hint_original.condhint
        self.model_latent_format = model.latent_format  # LatentFormat object, used to process_in latent cond hint
        if self.control_model.motion_wrapper is not None:
            self.control_model.motion_wrapper.reset()
            self.control_model.motion_wrapper.set_strength(self.sparse_settings.motion_strength)
            self.control_model.motion_wrapper.set_scale_multiplier(self.sparse_settings.motion_scale)

    def cleanup_advanced(self):
        super().cleanup_advanced()
        if self.model_latent_format is not None:
            del self.model_latent_format
            self.model_latent_format = None
        self.local_sparse_idxs = None
        self.local_sparse_idxs_inverse = None

    def copy(self):
        c = SparseCtrlAdvanced(self.control_model, self.timestep_keyframes, self.sparse_settings, self.global_average_pooling, self.load_device, self.manual_cast_dtype)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c


def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
    controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
    # from pathlib import Path
    # log_name = ckpt_path.split('\\')[-1]
    # with open(Path(__file__).parent.parent.parent / rf"keys_{log_name}.txt", "w") as afile:
    #     for key, value in controlnet_data.items():
    #         afile.write(f"{key}:\t{value.shape}\n")
    control = None
    # check if a non-vanilla ControlNet
    controlnet_type = ControlWeightType.DEFAULT
    has_controlnet_key = False
    has_motion_modules_key = False
    has_temporal_res_block_key = False
    for key in controlnet_data:
        # LLLite check
        if "lllite" in key:
            controlnet_type = ControlWeightType.CONTROLLLLITE
            break
        # SparseCtrl check
        elif "motion_modules" in key:
            has_motion_modules_key = True
        elif "controlnet" in key:
            has_controlnet_key = True
        # SVD-ControlNet check
        elif "temporal_res_block" in key:
            has_temporal_res_block_key = True
        # ControlNet++ check
        elif "task_embedding" in key:
            pass

    if has_controlnet_key and has_motion_modules_key:
        controlnet_type = ControlWeightType.SPARSECTRL
    elif has_controlnet_key and has_temporal_res_block_key:
        controlnet_type = ControlWeightType.SVD_CONTROLNET

    if controlnet_type != ControlWeightType.DEFAULT:
        if controlnet_type == ControlWeightType.CONTROLLLLITE:
            control = load_controllllite(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
        elif controlnet_type == ControlWeightType.SPARSECTRL:
            control = load_sparsectrl(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe, model=model)
        elif controlnet_type == ControlWeightType.SVD_CONTROLNET:
            control = load_svdcontrolnet(ckpt_path, controlnet_data=controlnet_data, timestep_keyframe=timestep_keyframe)
    # otherwise, load vanilla ControlNet
    else:
        try:
            # hacky way of getting load_torch_file in load_controlnet to use already-present controlnet_data and not redo loading
            orig_load_torch_file = comfy.utils.load_torch_file
            comfy.utils.load_torch_file = load_torch_file_with_dict_factory(controlnet_data, orig_load_torch_file)
            control = comfy_cn.load_controlnet(ckpt_path, model=model)
        finally:
            comfy.utils.load_torch_file = orig_load_torch_file
    return convert_to_advanced(control, timestep_keyframe=timestep_keyframe)


def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None):
    # if already advanced, leave it be
    if is_advanced_controlnet(control):
        return control
    # if exactly ControlNet returned, transform it into ControlNetAdvanced
    if type(control) == ControlNet:
        control = ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
        if is_sd3_advanced_controlnet(control):
            control.require_vae = True
        return control
    # if exactly ControlLora returned, transform it into ControlLoraAdvanced
    elif type(control) == ControlLora:
        return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
    # if T2IAdapter returned, transform it into T2IAdapterAdvanced
    elif isinstance(control, T2IAdapter):
        return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
    # otherwise, leave it be - might be something I am not supporting yet
    return control


def convert_all_to_advanced(conds: list[list[dict[str]]]) -> tuple[bool, list]:
    cache = {}
    modified = False
    new_conds = []
    for cond in conds:
        converted_cond = None
        if cond is not None:
            need_to_convert = False
            # first, check if there is even a need to convert
            for sub_cond in cond:
                actual_cond = sub_cond[1]
                if "control" in actual_cond:
                    if not are_all_advanced_controlnet(actual_cond["control"]):
                        need_to_convert = True
                        break
            if not need_to_convert:
                converted_cond = cond
            else:
                converted_cond = []
                for sub_cond in cond:
                    new_sub_cond: list = []
                    for actual_cond in sub_cond:
                        if not type(actual_cond) == dict:
                            new_sub_cond.append(actual_cond)
                            continue
                        if "control" not in actual_cond:
                            new_sub_cond.append(actual_cond)
                        elif are_all_advanced_controlnet(actual_cond["control"]):
                            new_sub_cond.append(actual_cond)
                        else:
                            actual_cond = actual_cond.copy()
                            actual_cond["control"] = _convert_all_control_to_advanced(actual_cond["control"], cache)
                            new_sub_cond.append(actual_cond)
                            modified = True
                    converted_cond.append(new_sub_cond)
        new_conds.append(converted_cond)
    return modified, new_conds


def _convert_all_control_to_advanced(input_object: ControlBase, cache: dict):
    output_object = input_object
    # iteratively convert to advanced, if needed
    next_cn = None
    curr_cn = input_object
    iter = 0
    while curr_cn is not None:
        if not is_advanced_controlnet(curr_cn):
            # if already in cache, then conversion was done before, so just link it and exit
            if curr_cn in cache:
                new_cn = cache[curr_cn]
                if next_cn is not None:
                    setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
                    next_cn.previous_controlnet = new_cn
                if iter == 0: # if was top-level controlnet, that's the new output
                    output_object = new_cn
                break
            try:
                # convert to advanced, and assign previous_controlnet (convert doesn't transfer it)
                new_cn = convert_to_advanced(curr_cn)
            except Exception as e:
                raise Exception("Failed to automatically convert a ControlNet to Advanced to support sliding window context.", e)
            new_cn.previous_controlnet = curr_cn.previous_controlnet
            if iter == 0: # if was top-level controlnet, that's the new output
                output_object = new_cn
            # if next_cn is present, then it needs to be pointed to new_cn
            if next_cn is not None:
                setattr(next_cn, ORIG_PREVIOUS_CONTROLNET, next_cn.previous_controlnet)
                next_cn.previous_controlnet = new_cn
            # add to cache
            cache[curr_cn] = new_cn
            curr_cn = new_cn
        next_cn = curr_cn
        curr_cn = curr_cn.previous_controlnet
        iter += 1
    return output_object


def restore_all_controlnet_conns(conds: list[list[dict[str]]]):
    # if a cn has an _orig_previous_controlnet property, restore it and delete
    for main_cond in conds:
        if main_cond is not None:
            for cond in main_cond:
                if "control" in cond[1]:
                    # if ACN is the one to have initialized it, delete it
                    # TODO: maybe check if someone else did a similar hack, and carefully pluck out our stuff?
                    if CONTROL_INIT_BY_ACN in cond[1]:
                        cond[1].pop("control")
                        cond[1].pop(CONTROL_INIT_BY_ACN)
                    else:
                        _restore_all_controlnet_conns(cond[1]["control"])


def _restore_all_controlnet_conns(input_object: ControlBase):
    # restore original previous_controlnet if needed
    curr_cn = input_object
    while curr_cn is not None:
        if hasattr(curr_cn, ORIG_PREVIOUS_CONTROLNET):
            curr_cn.previous_controlnet = getattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
            delattr(curr_cn, ORIG_PREVIOUS_CONTROLNET)
        curr_cn = curr_cn.previous_controlnet


def are_all_advanced_controlnet(input_object: ControlBase):
    # iteratively check if linked controlnets objects are all advanced
    curr_cn = input_object
    while curr_cn is not None:
        if not is_advanced_controlnet(curr_cn):
            return False
        curr_cn = curr_cn.previous_controlnet
    return True


def is_advanced_controlnet(input_object):
    return hasattr(input_object, "sub_idxs")


def is_sd3_advanced_controlnet(input_object: ControlNetAdvanced):
    return type(input_object) == ControlNetAdvanced and input_object.latent_format is not None


def load_sparsectrl(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, sparse_settings=SparseSettings.default(), model=None) -> SparseCtrlAdvanced:
    if controlnet_data is None:
        controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
    # first, separate out motion part from normal controlnet part and attempt to load that portion
    motion_data = {}
    for key in list(controlnet_data.keys()):
        if "temporal" in key:
            motion_data[key] = controlnet_data.pop(key)
    if len(motion_data) == 0:
        raise ValueError(f"No motion-related keys in '{ckpt_path}'; not a valid SparseCtrl model!")

    # now, load as if it was a normal controlnet - mostly copied from comfy load_controlnet function
    controlnet_config: dict[str] = None
    is_diffusers = False
    use_simplified_conditioning_embedding = False
    if "controlnet_cond_embedding.conv_in.weight" in controlnet_data:
        is_diffusers = True
    if "controlnet_cond_embedding.weight" in controlnet_data:
        is_diffusers = True
        use_simplified_conditioning_embedding = True
    if is_diffusers: #diffusers format
        unet_dtype = comfy.model_management.unet_dtype()
        controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
        diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
        diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
        diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                k_in = "controlnet_down_blocks.{}{}".format(count, s)
                k_out = "zero_convs.{}.0{}".format(count, s)
                if k_in not in controlnet_data:
                    loop = False
                    break
                diffusers_keys[k_in] = k_out
            count += 1
        # normal conditioning embedding
        if not use_simplified_conditioning_embedding:
            count = 0
            loop = True
            while loop:
                suffix = [".weight", ".bias"]
                for s in suffix:
                    if count == 0:
                        k_in = "controlnet_cond_embedding.conv_in{}".format(s)
                    else:
                        k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
                    k_out = "input_hint_block.{}{}".format(count * 2, s)
                    if k_in not in controlnet_data:
                        k_in = "controlnet_cond_embedding.conv_out{}".format(s)
                        loop = False
                    diffusers_keys[k_in] = k_out
                count += 1
        # simplified conditioning embedding
        else:
            count = 0
            suffix = [".weight", ".bias"]
            for s in suffix:
                k_in = "controlnet_cond_embedding{}".format(s)
                k_out = "input_hint_block.{}{}".format(count, s)
                diffusers_keys[k_in] = k_out

        new_sd = {}
        for k in diffusers_keys:
            if k in controlnet_data:
                new_sd[diffusers_keys[k]] = controlnet_data.pop(k)

        leftover_keys = controlnet_data.keys()
        if len(leftover_keys) > 0:
            logger.info("leftover keys:", leftover_keys)
        controlnet_data = new_sd

    pth_key = 'control_model.zero_convs.0.0.weight'
    pth = False
    key = 'zero_convs.0.0.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
        prefix = "control_model."
    elif key in controlnet_data:
        prefix = ""
    else:
        raise ValueError("The provided model is not a valid SparseCtrl model! [ErrorCode: HORSERADISH]")

    if controlnet_config is None:
        unet_dtype = comfy.model_management.unet_dtype()
        controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
    load_device = comfy.model_management.get_torch_device()
    manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
    if manual_cast_dtype is not None:
        controlnet_config["operations"] = manual_cast_clean_groupnorm
    else:
        controlnet_config["operations"] = disable_weight_init_clean_groupnorm
    controlnet_config.pop("out_channels")
    # get proper hint channels
    if use_simplified_conditioning_embedding:
        controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
        controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
    else:
        controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
        controlnet_config["use_simplified_conditioning_embedding"] = use_simplified_conditioning_embedding
    control_model = SparseControlNet(**controlnet_config)

    if pth:
        if 'difference' in controlnet_data:
            if model is not None:
                comfy.model_management.load_models_gpu([model])
                model_sd = model.model_state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
            else:
                logger.warning("WARNING: Loaded a diff SparseCtrl without a model. It will very likely not work.")

        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
    else:
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    if len(missing) > 0 or len(unexpected) > 0:
        logger.info(f"SparseCtrl ControlNet: {missing}, {unexpected}")

    global_average_pooling = False
    filename = os.path.splitext(ckpt_path)[0]
    if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    # actually load motion portion of model now
    motion_wrapper: SparseCtrlMotionWrapper = SparseCtrlMotionWrapper(motion_data, ops=controlnet_config.get("operations", None)).to(comfy.model_management.unet_dtype())
    missing, unexpected = motion_wrapper.load_state_dict(motion_data)
    if len(missing) > 0 or len(unexpected) > 0:
        logger.info(f"SparseCtrlMotionWrapper: {missing}, {unexpected}")

    # both motion portion and controlnet portions are loaded; bring them together if using motion model
    if sparse_settings.use_motion:
        motion_wrapper.inject(control_model)

    control = SparseCtrlAdvanced(control_model, timestep_keyframes=timestep_keyframe, sparse_settings=sparse_settings, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
    return control


def load_svdcontrolnet(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
    if controlnet_data is None:
        controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)

    controlnet_config = None
    if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
        unet_dtype = comfy.model_management.unet_dtype()
        controlnet_config = svd_unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
        diffusers_keys = svd_unet_to_diffusers(controlnet_config)
        diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
        diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                k_in = "controlnet_down_blocks.{}{}".format(count, s)
                k_out = "zero_convs.{}.0{}".format(count, s)
                if k_in not in controlnet_data:
                    loop = False
                    break
                diffusers_keys[k_in] = k_out
            count += 1

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                if count == 0:
                    k_in = "controlnet_cond_embedding.conv_in{}".format(s)
                else:
                    k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
                k_out = "input_hint_block.{}{}".format(count * 2, s)
                if k_in not in controlnet_data:
                    k_in = "controlnet_cond_embedding.conv_out{}".format(s)
                    loop = False
                diffusers_keys[k_in] = k_out
            count += 1

        new_sd = {}
        for k in diffusers_keys:
            if k in controlnet_data:
                new_sd[diffusers_keys[k]] = controlnet_data.pop(k)

        leftover_keys = controlnet_data.keys()
        if len(leftover_keys) > 0:
            spatial_leftover_keys = []
            temporal_leftover_keys = []
            other_leftover_keys = []
            for key in leftover_keys:
                if "spatial" in key:
                    spatial_leftover_keys.append(key)
                elif "temporal" in key:
                    temporal_leftover_keys.append(key)
                else:
                    other_leftover_keys.append(key)
            logger.warn(f"spatial_leftover_keys ({len(spatial_leftover_keys)}): {spatial_leftover_keys}")
            logger.warn(f"temporal_leftover_keys ({len(temporal_leftover_keys)}): {temporal_leftover_keys}")
            logger.warn(f"other_leftover_keys ({len(other_leftover_keys)}): {other_leftover_keys}")
            #print("leftover keys:", leftover_keys)
        controlnet_data = new_sd

    pth_key = 'control_model.zero_convs.0.0.weight'
    pth = False
    key = 'zero_convs.0.0.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
        prefix = "control_model."
    elif key in controlnet_data:
        prefix = ""
    else:
        raise ValueError("The provided model is not a valid SVD-ControlNet model! [ErrorCode: MUSTARD]")

    if controlnet_config is None:
        unet_dtype = comfy.model_management.unet_dtype()
        controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
    load_device = comfy.model_management.get_torch_device()
    manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
    if manual_cast_dtype is not None:
        controlnet_config["operations"] = comfy.ops.manual_cast
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
    control_model = SVDControlNet(**controlnet_config)

    if pth:
        if 'difference' in controlnet_data:
            if model is not None:
                comfy.model_management.load_models_gpu([model])
                model_sd = model.model_state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
    else:
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    if len(missing) > 0 or len(unexpected) > 0:
        logger.info(f"SVD-ControlNet: {missing}, {unexpected}")

    global_average_pooling = False
    filename = os.path.splitext(ckpt_path)[0]
    if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = SVDControlNetAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
    return control