File size: 21,654 Bytes
028694a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
# basically, all the LLLite core code is from there, which I then combined with
# Advanced-ControlNet features and QoL
import math
from typing import Union
from torch import Tensor
import torch
import os

import comfy.utils
import comfy.ops
import comfy.model_management
from comfy.model_patcher import ModelPatcher
from comfy.controlnet import ControlBase

from .logger import logger
from .utils import (AdvancedControlBase, TimestepKeyframeGroup, ControlWeights, broadcast_image_to_extend, extend_to_batch_size,
                    deepcopy_with_sharing, prepare_mask_batch)


# based on set_model_patch code in comfy/model_patcher.py
def set_model_patch(model_options, patch, name):
    to = model_options["transformer_options"]
    # check if patch was already added
    if "patches" in to:
        current_patches = to["patches"].get(name, [])
        if patch in current_patches:
            return
    if "patches" not in to:
        to["patches"] = {}
    to["patches"][name] = to["patches"].get(name, []) + [patch]

def set_model_attn1_patch(model_options, patch):
    set_model_patch(model_options, patch, "attn1_patch")

def set_model_attn2_patch(model_options, patch):
    set_model_patch(model_options, patch, "attn2_patch")


def extra_options_to_module_prefix(extra_options):
    # extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}

    # block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
    #   ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
    # transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
    # block_index is: 0-1 or 0-9, depends on the block
    # input 7 and 8, middle has 10 blocks

    # make module name from extra_options
    block = extra_options["block"]
    block_index = extra_options["block_index"]
    if block[0] == "input":
        module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
    elif block[0] == "middle":
        module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
    elif block[0] == "output":
        module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
    else:
        raise Exception(f"ControlLLLite: invalid block name '{block[0]}'. Expected 'input', 'middle', or 'output'.")
    return module_pfx


class LLLitePatch:
    ATTN1 = "attn1"
    ATTN2 = "attn2"
    def __init__(self, modules: dict[str, 'LLLiteModule'], patch_type: str, control: Union[AdvancedControlBase, ControlBase]=None):
        self.modules = modules
        self.control = control
        self.patch_type = patch_type
        #logger.error(f"create LLLitePatch: {id(self)},{control}")
    
    def __call__(self, q, k, v, extra_options):
        #logger.error(f"in __call__: {id(self)}")
        # determine if have anything to run
        if self.control.timestep_range is not None:
            # it turns out comparing single-value tensors to floats is extremely slow
            # a: Tensor = extra_options["sigmas"][0]
            if self.control.t > self.control.timestep_range[0] or self.control.t < self.control.timestep_range[1]:
                return q, k, v

        module_pfx = extra_options_to_module_prefix(extra_options)

        is_attn1 = q.shape[-1] == k.shape[-1]  # self attention
        if is_attn1:
            module_pfx = module_pfx + "_attn1"
        else:
            module_pfx = module_pfx + "_attn2"

        module_pfx_to_q = module_pfx + "_to_q"
        module_pfx_to_k = module_pfx + "_to_k"
        module_pfx_to_v = module_pfx + "_to_v"

        if module_pfx_to_q in self.modules:
            q = q + self.modules[module_pfx_to_q](q, self.control)
        if module_pfx_to_k in self.modules:
            k = k + self.modules[module_pfx_to_k](k, self.control)
        if module_pfx_to_v in self.modules:
            v = v + self.modules[module_pfx_to_v](v, self.control)

        return q, k, v

    def to(self, device):
        #logger.info(f"to... has control? {self.control}")
        for d in self.modules.keys():
            self.modules[d] = self.modules[d].to(device)
        return self
    
    def set_control(self, control: Union[AdvancedControlBase, ControlBase]) -> 'LLLitePatch':
        self.control = control
        return self
        #logger.error(f"set control for LLLitePatch: {id(self)}, cn: {id(control)}")

    def clone_with_control(self, control: AdvancedControlBase):
        #logger.error(f"clone-set control for LLLitePatch: {id(self)},{id(control)}")
        return LLLitePatch(self.modules, self.patch_type, control)

    def cleanup(self):
        #total_cleaned = 0
        for module in self.modules.values():
            module.cleanup()
        #    total_cleaned += 1
        #logger.info(f"cleaned modules: {total_cleaned}, {id(self)}")
        #logger.error(f"cleanup LLLitePatch: {id(self)}")

    # make sure deepcopy does not copy control, and deepcopied LLLitePatch should be assigned to control
    # def __deepcopy__(self, memo):
    #     self.cleanup()
    #     to_return: LLLitePatch = deepcopy_with_sharing(self, shared_attribute_names = ['control'], memo=memo)
    #     #logger.warn(f"patch {id(self)} turned into {id(to_return)}")
    #     try:
    #         if self.patch_type == self.ATTN1:
    #             to_return.control.patch_attn1 = to_return
    #         elif self.patch_type == self.ATTN2:
    #             to_return.control.patch_attn2 = to_return
    #     except Exception:
    #         pass
    #     return to_return


# TODO: use comfy.ops to support fp8 properly
class LLLiteModule(torch.nn.Module):
    def __init__(

        self,

        name: str,

        is_conv2d: bool,

        in_dim: int,

        depth: int,

        cond_emb_dim: int,

        mlp_dim: int,

    ):
        super().__init__()
        self.name = name
        self.is_conv2d = is_conv2d
        self.is_first = False

        modules = []
        modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))  # to latent (from VAE) size*2
        if depth == 1:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
        elif depth == 2:
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
        elif depth == 3:
            # kernel size 8 is too large, so set it to 4
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
            modules.append(torch.nn.ReLU(inplace=True))
            modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))

        self.conditioning1 = torch.nn.Sequential(*modules)

        if self.is_conv2d:
            self.down = torch.nn.Sequential(
                torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
            )
        else:
            self.down = torch.nn.Sequential(
                torch.nn.Linear(in_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.mid = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
                torch.nn.ReLU(inplace=True),
            )
            self.up = torch.nn.Sequential(
                torch.nn.Linear(mlp_dim, in_dim),
            )

        self.depth = depth
        self.cond_emb = None
        self.cx_shape = None
        self.prev_batch = 0
        self.prev_sub_idxs = None

    def cleanup(self):
        del self.cond_emb
        self.cond_emb = None
        self.cx_shape = None
        self.prev_batch = 0
        self.prev_sub_idxs = None

    def forward(self, x: Tensor, control: Union[AdvancedControlBase, ControlBase]):
        mask = None
        mask_tk = None
        #logger.info(x.shape)
        if self.cond_emb is None or control.sub_idxs != self.prev_sub_idxs or x.shape[0] != self.prev_batch:
            # print(f"cond_emb is None, {self.name}")
            cond_hint = control.cond_hint.to(x.device, dtype=x.dtype)
            if control.latent_dims_div2 is not None and x.shape[-1] != 1280:
                cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div2[0] * 8, control.latent_dims_div2[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
            elif control.latent_dims_div4 is not None and x.shape[-1] == 1280:
                cond_hint = comfy.utils.common_upscale(cond_hint, control.latent_dims_div4[0] * 8, control.latent_dims_div4[1] * 8, 'nearest-exact', "center").to(x.device, dtype=x.dtype)
            cx = self.conditioning1(cond_hint)
            self.cx_shape = cx.shape
            if not self.is_conv2d:
                # reshape / b,c,h,w -> b,h*w,c
                n, c, h, w = cx.shape
                cx = cx.view(n, c, h * w).permute(0, 2, 1)
            self.cond_emb = cx
        # save prev values
        self.prev_batch = x.shape[0]
        self.prev_sub_idxs = control.sub_idxs

        cx: torch.Tensor = self.cond_emb
        # print(f"forward {self.name}, {cx.shape}, {x.shape}")

        # TODO: make masks work for conv2d (could not find any ControlLLLites at this time that use them)
        # create masks
        if not self.is_conv2d:
            n, c, h, w = self.cx_shape
            if control.mask_cond_hint is not None:
                mask = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
                mask = mask.view(mask.shape[0], 1, h * w).permute(0, 2, 1)
            if control.tk_mask_cond_hint is not None:
                mask_tk = prepare_mask_batch(control.mask_cond_hint, (1, 1, h, w)).to(cx.dtype)
                mask_tk = mask_tk.view(mask_tk.shape[0], 1, h * w).permute(0, 2, 1)

        # x in uncond/cond doubles batch size
        if x.shape[0] != cx.shape[0]:
            if self.is_conv2d:
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
            else:
                # print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
                cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
                if mask is not None:
                    mask = mask.repeat(x.shape[0] // mask.shape[0], 1, 1)
                if mask_tk is not None:
                    mask_tk = mask_tk.repeat(x.shape[0] // mask_tk.shape[0], 1, 1)

        if mask is None:
            mask = 1.0
        elif mask_tk is not None:
            mask = mask * mask_tk

        #logger.info(f"cs: {cx.shape}, x: {x.shape}, is_conv2d: {self.is_conv2d}")
        cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
        cx = self.mid(cx)
        cx = self.up(cx)
        if control.latent_keyframes is not None:
            cx = cx * control.calc_latent_keyframe_mults(x=cx, batched_number=control.batched_number)
        if control.weights is not None and control.weights.has_uncond_multiplier:
            cond_or_uncond = control.batched_number.cond_or_uncond
            actual_length = cx.size(0) // control.batched_number
            for idx, cond_type in enumerate(cond_or_uncond):
                # if uncond, set to weight's uncond_multiplier
                if cond_type == 1:
                    cx[actual_length*idx:actual_length*(idx+1)] *= control.weights.uncond_multiplier
        return cx * mask * control.strength * control._current_timestep_keyframe.strength


class ControlLLLiteModules(torch.nn.Module):
    def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch):
        super().__init__()
        self.patch_attn1_modules = torch.nn.Sequential(*list(patch_attn1.modules.values()))
        self.patch_attn2_modules = torch.nn.Sequential(*list(patch_attn2.modules.values()))


class ControlLLLiteAdvanced(ControlBase, AdvancedControlBase):
    # This ControlNet is more of an attention patch than a traditional controlnet
    def __init__(self, patch_attn1: LLLitePatch, patch_attn2: LLLitePatch, timestep_keyframes: TimestepKeyframeGroup, device, ops: comfy.ops.disable_weight_init):
        super().__init__()
        AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite())
        self.device = device
        self.ops = ops
        self.patch_attn1 = patch_attn1.clone_with_control(self)
        self.patch_attn2 = patch_attn2.clone_with_control(self)
        self.control_model = ControlLLLiteModules(self.patch_attn1, self.patch_attn2)
        self.control_model_wrapped = ModelPatcher(self.control_model, load_device=device, offload_device=comfy.model_management.unet_offload_device())
        self.latent_dims_div2 = None
        self.latent_dims_div4 = None

    def live_model_patches(self, model_options):
        set_model_attn1_patch(model_options, self.patch_attn1.set_control(self))
        set_model_attn2_patch(model_options, self.patch_attn2.set_control(self))

    # def patch_model(self, model: ModelPatcher):
    #     model.set_model_attn1_patch(self.patch_attn1)
    #     model.set_model_attn2_patch(self.patch_attn2)

    def set_cond_hint_inject(self, *args, **kwargs):
        to_return = super().set_cond_hint_inject(*args, **kwargs)
        # cond hint for LLLite needs to be scaled between (-1, 1) instead of (0, 1)
        self.cond_hint_original = self.cond_hint_original * 2.0 - 1.0
        return to_return

    def pre_run_advanced(self, *args, **kwargs):
        AdvancedControlBase.pre_run_advanced(self, *args, **kwargs)
        #logger.error(f"in cn: {id(self.patch_attn1)},{id(self.patch_attn2)}")
        self.patch_attn1.set_control(self)
        self.patch_attn2.set_control(self)
        #logger.warn(f"in pre_run_advanced: {id(self)}")
    
    def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int):
        # normal ControlNet stuff
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                return control_prev
        
        dtype = x_noisy.dtype
        # prepare cond_hint
        if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
            # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
            if self.sub_idxs is not None:
                actual_cond_hint_orig = self.cond_hint_original
                if self.cond_hint_original.size(0) < self.full_latent_length:
                    actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
                self.cond_hint = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
            else:
                self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(x_noisy.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to_extend(self.cond_hint, x_noisy.shape[0], batched_number)
        # some special logic here compared to other controlnets:
        # * The cond_emb in attn patches will divide latent dims by 2 or 4, integer
        # * Due to this loss, the cond_emb will become smaller than x input if latent dims are not divisble by 2 or 4
        divisible_by_2_h = x_noisy.shape[2]%2==0
        divisible_by_2_w = x_noisy.shape[3]%2==0
        if not (divisible_by_2_h and divisible_by_2_w):
            #logger.warn(f"{x_noisy.shape} not divisible by 2!")
            new_h = (x_noisy.shape[2]//2)*2
            new_w = (x_noisy.shape[3]//2)*2
            if not divisible_by_2_h:
                new_h += 2
            if not divisible_by_2_w:
                new_w += 2
            self.latent_dims_div2 = (new_h, new_w)
        divisible_by_4_h = x_noisy.shape[2]%4==0
        divisible_by_4_w =  x_noisy.shape[3]%4==0
        if not (divisible_by_4_h and divisible_by_4_w):
            #logger.warn(f"{x_noisy.shape} not divisible by 4!")
            new_h = (x_noisy.shape[2]//4)*4
            new_w = (x_noisy.shape[3]//4)*4
            if not divisible_by_4_h:
                new_h += 4
            if not divisible_by_4_w:
                new_w += 4
            self.latent_dims_div4 = (new_h, new_w)
        # prepare mask
        self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
        # done preparing; model patches will take care of everything now.
        # return normal controlnet stuff
        return control_prev
    
    def get_models(self):
        to_return: list = super().get_models()
        to_return.append(self.control_model_wrapped)
        return to_return

    def cleanup_advanced(self):
        super().cleanup_advanced()
        self.patch_attn1.cleanup()
        self.patch_attn2.cleanup()
        self.latent_dims_div2 = None
        self.latent_dims_div4 = None
    
    def copy(self):
        c = ControlLLLiteAdvanced(self.patch_attn1, self.patch_attn2, self.timestep_keyframes, self.device, self.ops)
        self.copy_to(c)
        self.copy_to_advanced(c)
        return c
    
    # deepcopy needs to properly keep track of objects to work between model.clone calls!
    # def __deepcopy__(self, *args, **kwargs):
    #     self.cleanup_advanced()
    #     return self

    # def get_models(self):
    #     # get_models is called once at the start of every KSampler run - use to reset already_patched status
    #     out = super().get_models()
    #     logger.error(f"in get_models! {id(self)}")
    #     return out


def load_controllllite(ckpt_path: str, controlnet_data: dict[str, Tensor]=None, timestep_keyframe: TimestepKeyframeGroup=None):
    if controlnet_data is None:
        controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
    # adapted from https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI
    # first, split weights for each module
    module_weights = {}
    for key, value in controlnet_data.items():
        fragments = key.split(".")
        module_name = fragments[0]
        weight_name = ".".join(fragments[1:])

        if module_name not in module_weights:
            module_weights[module_name] = {}
        module_weights[module_name][weight_name] = value

    unet_dtype = comfy.model_management.unet_dtype()
    load_device = comfy.model_management.get_torch_device()
    manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
    ops = comfy.ops.disable_weight_init
    if manual_cast_dtype is not None:
        ops = comfy.ops.manual_cast

    # next, load each module
    modules = {}
    for module_name, weights in module_weights.items():
        # kohya planned to do something about how these should be chosen, so I'm not touching this
        # since I am not familiar with the logic for this
        if "conditioning1.4.weight" in weights:
            depth = 3
        elif weights["conditioning1.2.weight"].shape[-1] == 4:
            depth = 2
        else:
            depth = 1

        module = LLLiteModule(
            name=module_name,
            is_conv2d=weights["down.0.weight"].ndim == 4,
            in_dim=weights["down.0.weight"].shape[1],
            depth=depth,
            cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
            mlp_dim=weights["down.0.weight"].shape[0],
        )
        # load weights into module
        module.load_state_dict(weights)
        modules[module_name] = module.to(dtype=unet_dtype)
        if len(modules) == 1:
            module.is_first = True

    #logger.info(f"loaded {ckpt_path} successfully, {len(modules)} modules")

    patch_attn1 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN1)
    patch_attn2 = LLLitePatch(modules=modules, patch_type=LLLitePatch.ATTN2)
    control = ControlLLLiteAdvanced(patch_attn1=patch_attn1, patch_attn2=patch_attn2, timestep_keyframes=timestep_keyframe, device=load_device, ops=ops)
    return control