Spaces:
Running
Running
File size: 23,747 Bytes
028694a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
# Code ported and modified from the diffusers ControlNetPlus repo by Qi Xin:
# https://github.com/xinsir6/ControlNetPlus/blob/main/models/controlnet_union.py
from typing import Union
import os
import torch
import torch as th
import torch.nn as nn
from torch import Tensor
from collections import OrderedDict
from comfy.ldm.modules.diffusionmodules.util import (zero_module, timestep_embedding)
from comfy.cldm.cldm import ControlNet as ControlNetCLDM
import comfy.cldm.cldm
from comfy.controlnet import ControlNet
#from comfy.t2i_adapter.adapter import ResidualAttentionBlock
from comfy.ldm.modules.attention import optimized_attention
import comfy.ops
import comfy.model_management
import comfy.model_detection
import comfy.utils
from .utils import (AdvancedControlBase, ControlWeights, ControlWeightType, TimestepKeyframeGroup, AbstractPreprocWrapper,
extend_to_batch_size, broadcast_image_to_extend)
from .logger import logger
class PlusPlusType:
OPENPOSE = "openpose"
DEPTH = "depth"
THICKLINE = "hed/pidi/scribble/ted"
THINLINE = "canny/lineart/mlsd"
NORMAL = "normal"
SEGMENT = "segment"
TILE = "tile"
REPAINT = "inpaint/outpaint"
NONE = "none"
_LIST_WITH_NONE = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT, NONE]
_LIST = [OPENPOSE, DEPTH, THICKLINE, THINLINE, NORMAL, SEGMENT, TILE, REPAINT]
_DICT = {OPENPOSE: 0, DEPTH: 1, THICKLINE: 2, THINLINE: 3, NORMAL: 4, SEGMENT: 5, TILE: 6, REPAINT: 7, NONE: -1}
@classmethod
def to_idx(cls, control_type: str):
try:
return cls._DICT[control_type]
except KeyError:
raise Exception(f"Unknown control type '{control_type}'.")
class PlusPlusInput:
def __init__(self, image: Tensor, control_type: str, strength: float):
self.image = image
self.control_type = control_type
self.strength = strength
def clone(self):
return PlusPlusInput(self.image, self.control_type, self.strength)
class PlusPlusInputGroup:
def __init__(self):
self.controls: dict[str, PlusPlusInput] = {}
def add(self, pp_input: PlusPlusInput):
if pp_input.control_type in self.controls:
raise Exception(f"Control type '{pp_input.control_type}' is already present; ControlNet++ does not allow more than 1 of each type.")
self.controls[pp_input.control_type] = pp_input
def clone(self) -> 'PlusPlusInputGroup':
cloned = PlusPlusInputGroup()
for key, value in self.controls.items():
cloned.controls[key] = value.clone()
return cloned
class PlusPlusImageWrapper(AbstractPreprocWrapper):
error_msg = error_msg = "Invalid use of ControlNet++ Image Wrapper. The output of ControlNet++ Image Wrapper is NOT a usual image, but an object holding the images and extra info - you must connect the output directly to an Apply Advanced ControlNet node. It cannot be used for anything else that accepts IMAGE input."
def __init__(self, condhint: PlusPlusInputGroup):
super().__init__(condhint)
# just an IDE type hint
self.condhint: PlusPlusInputGroup
def movedim(self, source: int, destination: int):
condhint = self.condhint.clone()
for pp_input in condhint.controls.values():
pp_input.image = pp_input.image.movedim(source, destination)
return PlusPlusImageWrapper(condhint)
# parts taken from comfy/cldm/cldm.py
class OptimizedAttention(nn.Module):
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.heads = nhead
self.c = c
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, x):
x = self.in_proj(x)
q, k, v = x.split(self.c, dim=2)
out = optimized_attention(q, k, v, self.heads)
return self.out_proj(out)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResBlockUnionControlnet(nn.Module):
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
super().__init__()
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
self.mlp = nn.Sequential(
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
def attention(self, x: torch.Tensor):
return self.attn(x)
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class ControlAddEmbeddingAdv(nn.Module):
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations: comfy.ops.disable_weight_init=None):
super().__init__()
self.num_control_type = num_control_type
self.in_dim = in_dim
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
def forward(self, control_type, dtype, device):
if control_type is None:
control_type = torch.zeros((self.num_control_type,), device=device)
c_type = timestep_embedding(control_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
class ControlNetPlusPlus(ControlNetCLDM):
def __init__(self, *args,**kwargs):
super().__init__(*args, **kwargs)
operations: comfy.ops.disable_weight_init = kwargs.get("operations", comfy.ops.disable_weight_init)
device = kwargs.get("device", None)
time_embed_dim = self.model_channels * 4
control_add_embed_dim = 256
self.control_add_embedding = ControlAddEmbeddingAdv(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
def union_controlnet_merge(self, hint: list[Tensor], control_type, emb, context):
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
indexes = torch.nonzero(control_type[0])
inputs = []
condition_list = []
for idx in range(indexes.shape[0]):
controlnet_cond = self.input_hint_block(hint[indexes[idx][0]], emb, context)
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
if idx < indexes.shape[0]:
feat_seq += self.task_embedding[indexes[idx][0]].to(dtype=feat_seq.dtype, device=feat_seq.device)
inputs.append(feat_seq.unsqueeze(1))
condition_list.append(controlnet_cond)
x = torch.cat(inputs, dim=1)
x = self.transformer_layes(x)
controlnet_cond_fuser = None
for idx in range(indexes.shape[0]):
alpha = self.spatial_ch_projs(x[:, idx])
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
o = condition_list[idx] + alpha
if controlnet_cond_fuser is None:
controlnet_cond_fuser = o
else:
controlnet_cond_fuser += o
return controlnet_cond_fuser
def forward(self, x: Tensor, hint: list[Tensor], timesteps, context, y: Tensor=None, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
guided_hint = None
if self.control_add_embedding is not None:
control_type = kwargs.get("control_type", None)
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
if control_type is not None:
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
if guided_hint is None:
guided_hint = self.input_hint_block(hint[0], emb, context)
out_output = []
out_middle = []
hs = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
out_output.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
out_middle.append(self.middle_block_out(h, emb, context))
return {"middle": out_middle, "output": out_output}
class ControlNetPlusPlusAdvanced(ControlNet, AdvancedControlBase):
def __init__(self, control_model: ControlNetPlusPlus, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, load_device=None, manual_cast_dtype=None):
super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
self.add_compatible_weight(ControlWeightType.CONTROLNETPLUSPLUS)
# for IDE type hint purposes
self.control_model: ControlNetPlusPlus
self.cond_hint_original: Union[PlusPlusImageWrapper, PlusPlusInputGroup]
self.cond_hint: list[Union[Tensor, None]]
self.cond_hint_shape: Tensor = None
self.cond_hint_types: Tensor = None
# in case it is using the single loader
self.single_control_type: str = None
def get_universal_weights(self) -> ControlWeights:
def cn_weights_func(idx: int, control: dict[str, list[Tensor]], key: str):
if key == "middle":
return 1.0
c_len = len(control[key])
raw_weights = [(self.weights.base_multiplier ** float((c_len) - i)) for i in range(c_len+1)]
raw_weights = raw_weights[:-1]
if key == "input":
raw_weights.reverse()
return raw_weights[idx]
return self.weights.copy_with_new_weights(new_weight_func=cn_weights_func)
def verify_control_type(self, model_name: str, pp_group: PlusPlusInputGroup=None):
if pp_group is not None:
for pp_input in pp_group.controls.values():
if PlusPlusType.to_idx(pp_input.control_type) >= self.control_model.num_control_type:
raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{pp_input.control_type}'.")
if self.single_control_type is not None:
if PlusPlusType.to_idx(self.single_control_type) >= self.control_model.num_control_type:
raise Exception(f"ControlNet++ model '{model_name}' does not support control_type '{self.single_control_type}'.")
def set_cond_hint_inject(self, *args, **kwargs):
to_return = super().set_cond_hint_inject(*args, **kwargs)
# if not single_control_type, expect PlusPlusImageWrapper
if self.single_control_type is None:
# check that cond_hint is wrapped, and unwrap it
if type(self.cond_hint_original) != PlusPlusImageWrapper:
raise Exception("ControlNet++ (Multi) expects image input from the Load ControlNet++ Model node, NOT from anything else. Images are provided to that node via ControlNet++ Input nodes.")
self.cond_hint_original = self.cond_hint_original.condhint.clone()
# otherwise, expect single image input (AKA, usual controlnet input)
else:
# check that cond_hint is not a PlusPlusImageWrapper
if type(self.cond_hint_original) == PlusPlusImageWrapper:
raise Exception("ControlNet++ (Single) expects usual image input, NOT the image input from a Load ControlNet++ Model (Multi) node.")
pp_group = PlusPlusInputGroup()
pp_input = PlusPlusInput(self.cond_hint_original, self.single_control_type, 1.0)
pp_group.add(pp_input)
self.cond_hint_original = pp_group
return to_return
def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
output_dtype = x_noisy.dtype
# make all cond_hints appropriate dimensions
# TODO: change this to not require cond_hint upscaling every step when self.sub_idxs is present
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint_shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint_shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = [None] * self.control_model.num_control_type
self.cond_hint_types = torch.tensor([0.0] * self.control_model.num_control_type)
self.cond_hint_shape = None
compression_ratio = self.compression_ratio
# unlike normal controlnet, need to handle each input image tensor (for each type)
for pp_type, pp_input in self.cond_hint_original.controls.items():
pp_idx = PlusPlusType.to_idx(pp_type)
# if negative, means no type should be selected (single only)
if pp_idx < 0:
pp_idx = 0
else:
self.cond_hint_types[pp_idx] = pp_input.strength
# if self.cond_hint_original lengths greater or equal to latent count, subdivide
if self.sub_idxs is not None:
actual_cond_hint_orig = pp_input.image
if pp_input.image.size(0) < self.full_latent_length:
actual_cond_hint_orig = extend_to_batch_size(tensor=actual_cond_hint_orig, batch_size=self.full_latent_length)
self.cond_hint[pp_idx] = comfy.utils.common_upscale(actual_cond_hint_orig[self.sub_idxs], x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center")
else:
self.cond_hint[pp_idx] = comfy.utils.common_upscale(pp_input.image, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, 'nearest-exact', "center")
self.cond_hint[pp_idx] = self.cond_hint[pp_idx].to(device=x_noisy.device, dtype=dtype)
self.cond_hint_shape = self.cond_hint[pp_idx].shape
# prepare cond_hint_controls to match batchsize
if self.cond_hint_types.count_nonzero() == 0:
self.cond_hint_types = None
else:
self.cond_hint_types = self.cond_hint_types.unsqueeze(0).to(device=x_noisy.device, dtype=dtype).repeat(x_noisy.shape[0], 1)
for i in range(len(self.cond_hint)):
if self.cond_hint[i] is not None:
if x_noisy.shape[0] != self.cond_hint[i].shape[0]:
self.cond_hint[i] = broadcast_image_to_extend(self.cond_hint[i], x_noisy.shape[0], batched_number)
if self.cond_hint_types is not None and x_noisy.shape[0] != self.cond_hint_types.shape[0]:
self.cond_hint_types = broadcast_image_to_extend(self.cond_hint_types, x_noisy.shape[0], batched_number, False)
# prepare mask_cond_hint
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=dtype)
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
y = cond.get('y', None)
if y is not None:
y = y.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, control_type=self.cond_hint_types)
return self.control_merge(control, control_prev, output_dtype)
def copy(self):
c = ControlNetPlusPlusAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
self.copy_to(c)
self.copy_to_advanced(c)
c.single_control_type = self.single_control_type
return c
def load_controlnetplusplus(ckpt_path: str, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
# check that actually is ControlNet++ model
if "task_embedding" not in controlnet_data:
raise Exception(f"'{ckpt_path}' is not a valid ControlNet++ model.")
controlnet_config = None
supported_inference_dtypes = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
for k in list(controlnet_data.keys()):
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
new_sd[new_k] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
logger.warning("leftover ControlNet++ keys: {}".format(leftover_keys))
controlnet_data = new_sd
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
raise Exception("Unexpected SD3 diffusers format for ControlNet++ model. Something is very wrong.")
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
raise Exception("Unexpected T2IAdapter format for ControlNet++ model. Something is very wrong.")
if controlnet_config is None:
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
supported_inference_dtypes = model_config.supported_inference_dtypes
controlnet_config = model_config.unet_config
load_device = comfy.model_management.get_torch_device()
if supported_inference_dtypes is None:
unet_dtype = comfy.model_management.unet_dtype()
else:
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype is not None:
controlnet_config["operations"] = comfy.ops.manual_cast
controlnet_config["dtype"] = unet_dtype
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = ControlNetPlusPlus(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
comfy.model_management.load_models_gpu([model])
model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
logger.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
if len(missing) > 0:
logger.warning("missing ControlNet++ keys: {}".format(missing))
if len(unexpected) > 0:
logger.debug("unexpected ControlNet++ keys: {}".format(unexpected))
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
global_average_pooling = True
control = ControlNetPlusPlusAdvanced(control_model, timestep_keyframes=timestep_keyframe, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
|