Spaces:
Running
Running
File size: 17,882 Bytes
028694a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import numpy as np
from torch import Tensor
import folder_paths
import comfy.sample
from comfy.model_patcher import ModelPatcher
from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet
from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX
from .nodes_weight import (DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights,
SoftControlNetWeightsSD15, CustomControlNetWeightsSD15, CustomControlNetWeightsFlux,
SoftT2IAdapterWeights, CustomT2IAdapterWeights)
from .nodes_keyframes import (LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode,
TimestepKeyframeNode, TimestepKeyframeInterpolationNode, TimestepKeyframeFromStrengthListNode)
from .nodes_sparsectrl import SparseCtrlMergedLoaderAdvanced, SparseCtrlLoaderAdvanced, SparseIndexMethodNode, SparseSpreadMethodNode, RgbSparseCtrlPreprocessor, SparseWeightExtras
from .nodes_reference import ReferenceControlNetNode, ReferenceControlFinetune, ReferencePreprocessorNode
from .nodes_plusplus import PlusPlusLoaderAdvanced, PlusPlusLoaderSingle, PlusPlusInputNode
from .nodes_loosecontrol import ControlNetLoaderWithLoraAdvanced
from .nodes_deprecated import (LoadImagesFromDirectory, ScaledSoftUniversalWeightsDeprecated,
SoftControlNetWeightsDeprecated, CustomControlNetWeightsDeprecated,
SoftT2IAdapterWeightsDeprecated, CustomT2IAdapterWeightsDeprecated)
from .logger import logger
from .sampling import acn_sample_factory
# inject sample functions
comfy.sample.sample = acn_sample_factory(comfy.sample.sample)
comfy.sample.sample_custom = acn_sample_factory(comfy.sample.sample_custom, is_custom=True)
class ControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"), ),
},
"optional": {
"tk_optional": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def load_controlnet(self, control_net_name,
tk_optional: TimestepKeyframeGroup=None,
timestep_keyframe: TimestepKeyframeGroup=None,
):
if timestep_keyframe is not None: # backwards compatibility
tk_optional = timestep_keyframe
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, tk_optional)
return (controlnet,)
class DiffControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )
},
"optional": {
"tk_optional": ("TIMESTEP_KEYFRAME", ),
"autosize": ("ACNAUTOSIZE", {"padding": 160}),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def load_controlnet(self, control_net_name, model,
tk_optional: TimestepKeyframeGroup=None,
timestep_keyframe: TimestepKeyframeGroup=None
):
if timestep_keyframe is not None: # backwards compatibility
tk_optional = timestep_keyframe
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, tk_optional, model)
if is_advanced_controlnet(controlnet):
controlnet.verify_all_weights()
return (controlnet,)
class AdvancedControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"model_optional": ("MODEL",),
"vae_optional": ("VAE",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","MODEL",)
RETURN_NAMES = ("positive", "negative", "model_opt")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None, control_apply_to_uncond=False):
if strength == 0:
return (positive, negative, model_optional)
if model_optional:
model_optional = model_optional.clone()
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
if conditioning is not None:
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
# copy, convert to advanced if needed, and set cond
c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional)
if is_advanced_controlnet(c_net):
# disarm node check
c_net.disarm()
# if model required, verify model is passed in, and if so patch it
if c_net.require_model:
if not model_optional:
raise Exception(f"Type '{type(c_net).__name__}' requires model_optional input, but got None.")
c_net.patch_model(model=model_optional)
# if vae required, verify vae is passed in
if c_net.require_vae:
# if controlnet can accept preprocced condhint latents and is the case, ignore vae requirement
if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper):
pass
elif not vae_optional:
# make sure SD3 ControlNet will get a special message instead of generic type mention
if is_sd3_advanced_controlnet:
raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.")
else:
raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.")
# apply optional parameters and overrides, if provided
if timestep_kf is not None:
c_net.set_timestep_keyframes(timestep_kf)
if latent_kf_override is not None:
c_net.latent_keyframe_override = latent_kf_override
if weights_override is not None:
c_net.weights_override = weights_override
# verify weights are compatible
c_net.verify_all_weights()
# set cond hint mask
if mask_optional is not None:
mask_optional = mask_optional.clone()
# if not in the form of a batch, make it so
if len(mask_optional.shape) < 3:
mask_optional = mask_optional.unsqueeze(0)
c_net.set_cond_hint_mask(mask_optional)
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = control_apply_to_uncond
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1], model_optional)
class AdvancedControlNetApplySingle:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"model_optional": ("MODEL",),
"vae_optional": ("VAE",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONDITIONING","MODEL",)
RETURN_NAMES = ("CONDITIONING", "model_opt")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet ππ
π
π
"
def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None):
values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image,
strength=strength, start_percent=start_percent, end_percent=end_percent,
mask_optional=mask_optional, model_optional=model_optional, vae_optional=vae_optional,
timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,
control_apply_to_uncond=True)
return (values[0], values[2])
# NODE MAPPING
NODE_CLASS_MAPPINGS = {
# Keyframes
"TimestepKeyframe": TimestepKeyframeNode,
"ACN_TimestepKeyframeInterpolation": TimestepKeyframeInterpolationNode,
"ACN_TimestepKeyframeFromStrengthList": TimestepKeyframeFromStrengthListNode,
"LatentKeyframe": LatentKeyframeNode,
"LatentKeyframeTiming": LatentKeyframeInterpolationNode,
"LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
"LatentKeyframeGroup": LatentKeyframeGroupNode,
# Conditioning
"ACN_AdvancedControlNetApply": AdvancedControlNetApply,
"ACN_AdvancedControlNetApplySingle": AdvancedControlNetApplySingle,
# Loaders
"ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
"DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
# Weights
"ACN_ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
"ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
"ACN_SoftControlNetWeightsSD15": SoftControlNetWeightsSD15,
"ACN_CustomControlNetWeightsSD15": CustomControlNetWeightsSD15,
"ACN_CustomControlNetWeightsFlux": CustomControlNetWeightsFlux,
"ACN_SoftT2IAdapterWeights": SoftT2IAdapterWeights,
"ACN_CustomT2IAdapterWeights": CustomT2IAdapterWeights,
"ACN_DefaultUniversalWeights": DefaultWeights,
# SparseCtrl
"ACN_SparseCtrlRGBPreprocessor": RgbSparseCtrlPreprocessor,
"ACN_SparseCtrlLoaderAdvanced": SparseCtrlLoaderAdvanced,
"ACN_SparseCtrlMergedLoaderAdvanced": SparseCtrlMergedLoaderAdvanced,
"ACN_SparseCtrlIndexMethodNode": SparseIndexMethodNode,
"ACN_SparseCtrlSpreadMethodNode": SparseSpreadMethodNode,
"ACN_SparseCtrlWeightExtras": SparseWeightExtras,
# ControlNet++
"ACN_ControlNet++LoaderSingle": PlusPlusLoaderSingle,
"ACN_ControlNet++LoaderAdvanced": PlusPlusLoaderAdvanced,
"ACN_ControlNet++InputNode": PlusPlusInputNode,
# Reference
"ACN_ReferencePreprocessor": ReferencePreprocessorNode,
"ACN_ReferenceControlNet": ReferenceControlNetNode,
"ACN_ReferenceControlNetFinetune": ReferenceControlFinetune,
# LOOSEControl
#"ACN_ControlNetLoaderWithLoraAdvanced": ControlNetLoaderWithLoraAdvanced,
# Deprecated
"LoadImagesFromDirectory": LoadImagesFromDirectory,
"ScaledSoftControlNetWeights": ScaledSoftUniversalWeightsDeprecated,
"SoftControlNetWeights": SoftControlNetWeightsDeprecated,
"CustomControlNetWeights": CustomControlNetWeightsDeprecated,
"SoftT2IAdapterWeights": SoftT2IAdapterWeightsDeprecated,
"CustomT2IAdapterWeights": CustomT2IAdapterWeightsDeprecated,
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Keyframes
"TimestepKeyframe": "Timestep Keyframe ππ
π
π
",
"ACN_TimestepKeyframeInterpolation": "Timestep Keyframe Interp. ππ
π
π
",
"ACN_TimestepKeyframeFromStrengthList": "Timestep Keyframe From List ππ
π
π
",
"LatentKeyframe": "Latent Keyframe ππ
π
π
",
"LatentKeyframeTiming": "Latent Keyframe Interp. ππ
π
π
",
"LatentKeyframeBatchedGroup": "Latent Keyframe From List ππ
π
π
",
"LatentKeyframeGroup": "Latent Keyframe Group ππ
π
π
",
# Conditioning
"ACN_AdvancedControlNetApply": "Apply Advanced ControlNet ππ
π
π
",
"ACN_AdvancedControlNetApplySingle": "Apply Advanced ControlNet(1) ππ
π
π
",
# Loaders
"ControlNetLoaderAdvanced": "Load Advanced ControlNet Model ππ
π
π
",
"DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) ππ
π
π
",
# Weights
"ACN_ScaledSoftControlNetWeights": "Scaled Soft Weights ππ
π
π
",
"ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights ππ
π
π
",
"ACN_SoftControlNetWeightsSD15": "ControlNet Soft Weights [SD1.5] ππ
π
π
",
"ACN_CustomControlNetWeightsSD15": "ControlNet Custom Weights [SD1.5] ππ
π
π
",
"ACN_CustomControlNetWeightsFlux": "ControlNet Custom Weights [Flux] ππ
π
π
",
"ACN_SoftT2IAdapterWeights": "T2IAdapter Soft Weights ππ
π
π
",
"ACN_CustomT2IAdapterWeights": "T2IAdapter Custom Weights ππ
π
π
",
"ACN_DefaultUniversalWeights": "Default Weights ππ
π
π
",
# SparseCtrl
"ACN_SparseCtrlRGBPreprocessor": "RGB SparseCtrl ππ
π
π
",
"ACN_SparseCtrlLoaderAdvanced": "Load SparseCtrl Model ππ
π
π
",
"ACN_SparseCtrlMergedLoaderAdvanced": "π§ͺLoad Merged SparseCtrl Model ππ
π
π
",
"ACN_SparseCtrlIndexMethodNode": "SparseCtrl Index Method ππ
π
π
",
"ACN_SparseCtrlSpreadMethodNode": "SparseCtrl Spread Method ππ
π
π
",
"ACN_SparseCtrlWeightExtras": "SparseCtrl Weight Extras ππ
π
π
",
# ControlNet++
"ACN_ControlNet++LoaderSingle": "Load ControlNet++ Model (Single) ππ
π
π
",
"ACN_ControlNet++LoaderAdvanced": "Load ControlNet++ Model (Multi) ππ
π
π
",
"ACN_ControlNet++InputNode": "ControlNet++ Input ππ
π
π
",
# Reference
"ACN_ReferencePreprocessor": "Reference Preproccessor ππ
π
π
",
"ACN_ReferenceControlNet": "Reference ControlNet ππ
π
π
",
"ACN_ReferenceControlNetFinetune": "Reference ControlNet (Finetune) ππ
π
π
",
# LOOSEControl
#"ACN_ControlNetLoaderWithLoraAdvanced": "Load Adv. ControlNet Model w/ LoRA ππ
π
π
",
# Deprecated
"LoadImagesFromDirectory": "π«Load Images [DEPRECATED] ππ
π
π
",
"ScaledSoftControlNetWeights": "Scaled Soft Weights ππ
π
π
",
"SoftControlNetWeights": "ControlNet Soft Weights ππ
π
π
",
"CustomControlNetWeights": "ControlNet Custom Weights ππ
π
π
",
"SoftT2IAdapterWeights": "T2IAdapter Soft Weights ππ
π
π
",
"CustomT2IAdapterWeights": "T2IAdapter Custom Weights ππ
π
π
",
}
|