File size: 22,448 Bytes
028694a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
from typing import Union
import numpy as np
from collections.abc import Iterable

from .utils import ControlWeights, TimestepKeyframe, TimestepKeyframeGroup, LatentKeyframe, LatentKeyframeGroup, BIGMIN, BIGMAX
from .utils import StrengthInterpolation as SI
from .logger import logger


class TimestepKeyframeNode:
    OUTDATED_DUMMY = -39

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
            },
            "optional": {
                "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
                "cn_weights": ("CONTROL_NET_WEIGHTS", ),
                "latent_keyframe": ("LATENT_KEYFRAME", ),
                "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
                "inherit_missing": ("BOOLEAN", {"default": True}, ),
                "guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
                "mask_optional": ("MASK", ),
                "autosize": ("ACNAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_NAMES = ("TIMESTEP_KF", )
    RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
    FUNCTION = "load_keyframe"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def load_keyframe(self,

                      start_percent: float,

                      strength: float=1.0,

                      cn_weights: ControlWeights=None, control_net_weights: ControlWeights=None, # old name

                      latent_keyframe: LatentKeyframeGroup=None,

                      prev_timestep_kf: TimestepKeyframeGroup=None, prev_timestep_keyframe: TimestepKeyframeGroup=None, # old name

                      null_latent_kf_strength: float=0.0,

                      inherit_missing=True,

                      guarantee_steps=OUTDATED_DUMMY,

                      guarantee_usage=True, # old input

                      mask_optional=None,):
        # if using outdated dummy value, means node on workflow is outdated and should appropriately convert behavior
        if guarantee_steps == self.OUTDATED_DUMMY:
            guarantee_steps = int(guarantee_usage)
        control_net_weights = control_net_weights if control_net_weights else cn_weights
        prev_timestep_keyframe = prev_timestep_keyframe if prev_timestep_keyframe else prev_timestep_kf
        if not prev_timestep_keyframe:
            prev_timestep_keyframe = TimestepKeyframeGroup()
        else:
            prev_timestep_keyframe = prev_timestep_keyframe.clone()
        keyframe = TimestepKeyframe(start_percent=start_percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
                                    control_weights=control_net_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
                                    guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional)
        prev_timestep_keyframe.add(keyframe)
        return (prev_timestep_keyframe,)
    

class TimestepKeyframeInterpolationNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
                "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                "strength_start": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
                "strength_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001},),
                "interpolation": (SI._LIST, ),
                "intervals": ("INT", {"default": 50, "min": 2, "max": 100, "step": 1}),
            },
            "optional": {
                "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "cn_weights": ("CONTROL_NET_WEIGHTS", ),
                "latent_keyframe": ("LATENT_KEYFRAME", ),
                "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
                "inherit_missing": ("BOOLEAN", {"default": True},),
                "mask_optional": ("MASK", ),
                "print_keyframes": ("BOOLEAN", {"default": False}),
                "autosize": ("ACNAUTOSIZE", {"padding": 50}),
            }
        }
    
    RETURN_NAMES = ("TIMESTEP_KF", )
    RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
    FUNCTION = "load_keyframe"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def load_keyframe(self,

                      start_percent: float, end_percent: float,

                      strength_start: float, strength_end: float, interpolation: str, intervals: int,

                      cn_weights: ControlWeights=None,

                      latent_keyframe: LatentKeyframeGroup=None,

                      prev_timestep_kf: TimestepKeyframeGroup=None,

                      null_latent_kf_strength: float=0.0,

                      inherit_missing=True,

                      guarantee_steps=1,

                      mask_optional=None, print_keyframes=False):
        if not prev_timestep_kf:
            prev_timestep_kf = TimestepKeyframeGroup()
        else:
            prev_timestep_kf = prev_timestep_kf.clone()

        percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=intervals, method=SI.LINEAR)
        strengths = SI.get_weights(num_from=strength_start, num_to=strength_end, length=intervals, method=interpolation)

        is_first = True
        for percent, strength in zip(percents, strengths):
            guarantee_steps = 0
            if is_first:
                guarantee_steps = 1
                is_first = False
            prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
                                    control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
                                    guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
            if print_keyframes:
                logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
        return (prev_timestep_kf,)


class TimestepKeyframeFromStrengthListNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
                "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001},),
                "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
            },
            "optional": {
                "prev_timestep_kf": ("TIMESTEP_KEYFRAME", ),
                "cn_weights": ("CONTROL_NET_WEIGHTS", ),
                "latent_keyframe": ("LATENT_KEYFRAME", ),
                "null_latent_kf_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},),
                "inherit_missing": ("BOOLEAN", {"default": True},),
                "mask_optional": ("MASK", ),
                "print_keyframes": ("BOOLEAN", {"default": False}),
                "autosize": ("ACNAUTOSIZE", {"padding": 0}),
            }
        }
    
    RETURN_NAMES = ("TIMESTEP_KF", )
    RETURN_TYPES = ("TIMESTEP_KEYFRAME", )
    FUNCTION = "load_keyframe"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def load_keyframe(self,

                      start_percent: float, end_percent: float,

                      float_strengths: float,

                      cn_weights: ControlWeights=None,

                      latent_keyframe: LatentKeyframeGroup=None,

                      prev_timestep_kf: TimestepKeyframeGroup=None,

                      null_latent_kf_strength: float=0.0,

                      inherit_missing=True,

                      guarantee_steps=1,

                      mask_optional=None, print_keyframes=False):
        if not prev_timestep_kf:
            prev_timestep_kf = TimestepKeyframeGroup()
        else:
            prev_timestep_kf = prev_timestep_kf.clone()

        if type(float_strengths) in (float, int):
            float_strengths = [float(float_strengths)]
        elif isinstance(float_strengths, Iterable):
            pass
        else:
            raise Exception(f"strengths_float must be either an iterable input or a float, but was {type(float_strengths).__repr__}.")
        percents = SI.get_weights(num_from=start_percent, num_to=end_percent, length=len(float_strengths), method=SI.LINEAR)

        is_first = True
        for percent, strength in zip(percents, float_strengths):
            guarantee_steps = 0
            if is_first:
                guarantee_steps = 1
                is_first = False
            prev_timestep_kf.add(TimestepKeyframe(start_percent=percent, strength=strength, null_latent_kf_strength=null_latent_kf_strength,
                                    control_weights=cn_weights, latent_keyframes=latent_keyframe, inherit_missing=inherit_missing,
                                    guarantee_steps=guarantee_steps, mask_hint_orig=mask_optional))
            if print_keyframes:
                logger.info(f"TimestepKeyframe - start_percent:{percent} = {strength}")
        return (prev_timestep_kf,)


class LatentKeyframeNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "batch_index": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
            },
            "optional": {
                "prev_latent_kf": ("LATENT_KEYFRAME", ),
                "autosize": ("ACNAUTOSIZE", {"padding": 0}),
            }
        }

    RETURN_NAMES = ("LATENT_KF", )
    RETURN_TYPES = ("LATENT_KEYFRAME", )
    FUNCTION = "load_keyframe"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def load_keyframe(self,

                      batch_index: int,

                      strength: float,

                      prev_latent_kf: LatentKeyframeGroup=None,

                      prev_latent_keyframe: LatentKeyframeGroup=None, # old name

                      ):
        prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
        if not prev_latent_keyframe:
            prev_latent_keyframe = LatentKeyframeGroup()
        else:
            prev_latent_keyframe = prev_latent_keyframe.clone()
        keyframe = LatentKeyframe(batch_index, strength)
        prev_latent_keyframe.add(keyframe)
        return (prev_latent_keyframe,)


class LatentKeyframeGroupNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "index_strengths": ("STRING", {"multiline": True, "default": ""}),
            },
            "optional": {
                "prev_latent_kf": ("LATENT_KEYFRAME", ),
                "latent_optional": ("LATENT", ),
                "print_keyframes": ("BOOLEAN", {"default": False}),
                "autosize": ("ACNAUTOSIZE", {"padding": 35}),
            }
        }
    
    RETURN_NAMES = ("LATENT_KF", )
    RETURN_TYPES = ("LATENT_KEYFRAME", )
    FUNCTION = "load_keyframes"

    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def validate_index(self, index: int, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
        # if part of range, do nothing
        if is_range:
            return index
        # otherwise, validate index
        # validate not out of range - only when latent_count is passed in
        if latent_count > 0 and index > latent_count-1:
            raise IndexError(f"Index '{index}' out of range for the total {latent_count} latents.")
        # if negative, validate not out of range
        if index < 0:
            if not allow_negative:
                raise IndexError(f"Negative indeces not allowed, but was {index}.")
            conv_index = latent_count+index
            if conv_index < 0:
                raise IndexError(f"Index '{index}', converted to '{conv_index}' out of range for the total {latent_count} latents.")
            index = conv_index
        return index

    def convert_to_index_int(self, raw_index: str, latent_count: int = 0, is_range: bool = False, allow_negative = False) -> int:
        try:
            return self.validate_index(int(raw_index), latent_count=latent_count, is_range=is_range, allow_negative=allow_negative)
        except ValueError as e:
            raise ValueError(f"index '{raw_index}' must be an integer.", e)

    def convert_to_latent_keyframes(self, latent_indeces: str, latent_count: int) -> set[LatentKeyframe]:
        if not latent_indeces:
            return set()
        int_latent_indeces = [i for i in range(0, latent_count)]
        allow_negative = latent_count > 0
        chosen_indeces = set()
        # parse string - allow positive ints, negative ints, and ranges separated by ':'
        groups = latent_indeces.split(",")
        groups = [g.strip() for g in groups]
        for g in groups:
            # parse strengths - default to 1.0 if no strength given
            strength = 1.0
            if '=' in g:
                g, strength_str = g.split("=", 1)
                g = g.strip()
                try:
                    strength = float(strength_str.strip())
                except ValueError as e:
                    raise ValueError(f"strength '{strength_str}' must be a float.", e)
                if strength < 0:
                    raise ValueError(f"Strength '{strength}' cannot be negative.")
            # parse range of indeces (e.g. 2:16)
            if ':' in g:
                index_range = g.split(":", 1)
                index_range = [r.strip() for r in index_range]
                start_index = self.convert_to_index_int(index_range[0], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
                end_index = self.convert_to_index_int(index_range[1], latent_count=latent_count, is_range=True, allow_negative=allow_negative)
                # if latents were passed in, base indeces on known latent count
                if len(int_latent_indeces) > 0:
                    for i in int_latent_indeces[start_index:end_index]:
                        chosen_indeces.add(LatentKeyframe(i, strength))
                # otherwise, assume indeces are valid
                else:
                    for i in range(start_index, end_index):
                        chosen_indeces.add(LatentKeyframe(i, strength))
            # parse individual indeces
            else:
                chosen_indeces.add(LatentKeyframe(self.convert_to_index_int(g, latent_count=latent_count, allow_negative=allow_negative), strength))
        return chosen_indeces

    def load_keyframes(self,

                       index_strengths: str,

                       prev_latent_kf: LatentKeyframeGroup=None,

                       prev_latent_keyframe: LatentKeyframeGroup=None, # old name

                       latent_image_opt=None,

                       print_keyframes=False):
        prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
        if not prev_latent_keyframe:
            prev_latent_keyframe = LatentKeyframeGroup()
        else:
            prev_latent_keyframe = prev_latent_keyframe.clone()
        curr_latent_keyframe = LatentKeyframeGroup()

        latent_count = -1
        if latent_image_opt:
            latent_count = latent_image_opt['samples'].size()[0]
        latent_keyframes = self.convert_to_latent_keyframes(index_strengths, latent_count=latent_count)

        for latent_keyframe in latent_keyframes:
            curr_latent_keyframe.add(latent_keyframe)
        
        if print_keyframes:
            for keyframe in curr_latent_keyframe.keyframes:
                logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")

        # replace values with prev_latent_keyframes
        for latent_keyframe in prev_latent_keyframe.keyframes:
            curr_latent_keyframe.add(latent_keyframe)

        return (curr_latent_keyframe,)

        
class LatentKeyframeInterpolationNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "batch_index_from": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
                "batch_index_to_excl": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX, "step": 1}),
                "strength_from": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
                "strength_to": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
                "interpolation": (SI._LIST, ),
            },
            "optional": {
                "prev_latent_kf": ("LATENT_KEYFRAME", ),
                "print_keyframes": ("BOOLEAN", {"default": False}),
                "autosize": ("ACNAUTOSIZE", {"padding": 50}),
            }
        }

    RETURN_NAMES = ("LATENT_KF", )
    RETURN_TYPES = ("LATENT_KEYFRAME", )
    FUNCTION = "load_keyframe"
    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def load_keyframe(self,

                        batch_index_from: int,

                        strength_from: float,

                        batch_index_to_excl: int,

                        strength_to: float,

                        interpolation: str,

                        prev_latent_kf: LatentKeyframeGroup=None,

                        prev_latent_keyframe: LatentKeyframeGroup=None, # old name

                        print_keyframes=False):

        if (batch_index_from > batch_index_to_excl):
            raise ValueError("batch_index_from must be less than or equal to batch_index_to.")

        if (batch_index_from < 0 and batch_index_to_excl >= 0):
            raise ValueError("batch_index_from and batch_index_to must be either both positive or both negative.")

        prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
        if not prev_latent_keyframe:
            prev_latent_keyframe = LatentKeyframeGroup()
        else:
            prev_latent_keyframe = prev_latent_keyframe.clone()
        curr_latent_keyframe = LatentKeyframeGroup()

        steps = batch_index_to_excl - batch_index_from
        diff = strength_to - strength_from
        if interpolation == SI.LINEAR:
            weights = np.linspace(strength_from, strength_to, steps)
        elif interpolation == SI.EASE_IN:
            index = np.linspace(0, 1, steps)
            weights = diff * np.power(index, 2) + strength_from
        elif interpolation == SI.EASE_OUT:
            index = np.linspace(0, 1, steps)
            weights = diff * (1 - np.power(1 - index, 2)) + strength_from
        elif interpolation == SI.EASE_IN_OUT:
            index = np.linspace(0, 1, steps)
            weights = diff * ((1 - np.cos(index * np.pi)) / 2) + strength_from

        for i in range(steps):
            keyframe = LatentKeyframe(batch_index_from + i, float(weights[i]))
            curr_latent_keyframe.add(keyframe)
        
        if print_keyframes:
            for keyframe in curr_latent_keyframe.keyframes:
                logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")

        # replace values with prev_latent_keyframes
        for latent_keyframe in prev_latent_keyframe.keyframes:
            curr_latent_keyframe.add(latent_keyframe)

        return (curr_latent_keyframe,)


class LatentKeyframeBatchedGroupNode:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "float_strengths": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
            },
            "optional": {
                "prev_latent_kf": ("LATENT_KEYFRAME", ),
                "print_keyframes": ("BOOLEAN", {"default": False}),
                "autosize": ("ACNAUTOSIZE", {"padding": 0}),
            }
        }

    RETURN_NAMES = ("LATENT_KF", )
    RETURN_TYPES = ("LATENT_KEYFRAME", )
    FUNCTION = "load_keyframe"
    CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…/keyframes"

    def load_keyframe(self, float_strengths: Union[float, list[float]],

                      prev_latent_kf: LatentKeyframeGroup=None,

                      prev_latent_keyframe: LatentKeyframeGroup=None, # old name

                      print_keyframes=False):
        prev_latent_keyframe = prev_latent_keyframe if prev_latent_keyframe else prev_latent_kf
        if not prev_latent_keyframe:
            prev_latent_keyframe = LatentKeyframeGroup()
        else:
            prev_latent_keyframe = prev_latent_keyframe.clone()
        curr_latent_keyframe = LatentKeyframeGroup()

        # if received a normal float input, do nothing
        if type(float_strengths) in (float, int):
            logger.info("No batched float_strengths passed into Latent Keyframe Batch Group node; will not create any new keyframes.")
        # if iterable, attempt to create LatentKeyframes with chosen strengths
        elif isinstance(float_strengths, Iterable):
            for idx, strength in enumerate(float_strengths):
                keyframe = LatentKeyframe(idx, strength)
                curr_latent_keyframe.add(keyframe)
        else:
            raise ValueError(f"Expected strengths to be an iterable input, but was {type(float_strengths).__repr__}.")    

        if print_keyframes:
            for keyframe in curr_latent_keyframe.keyframes:
                logger.info(f"LatentKeyframe {keyframe.batch_index}={keyframe.strength}")

        # replace values with prev_latent_keyframes
        for latent_keyframe in prev_latent_keyframe.keyframes:
            curr_latent_keyframe.add(latent_keyframe)

        return (curr_latent_keyframe,)