Spaces:
Running
Running
File size: 16,005 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# MIT licensed code from https://github.com/li-plus/seam-carving/
from enum import Enum
from typing import Optional, Tuple
import numba as nb
import numpy as np
from scipy.ndimage import sobel
DROP_MASK_ENERGY = 1e5
KEEP_MASK_ENERGY = 1e3
class OrderMode(str, Enum):
WIDTH_FIRST = "width-first"
HEIGHT_FIRST = "height-first"
class EnergyMode(str, Enum):
FORWARD = "forward"
BACKWARD = "backward"
def _list_enum(enum_class) -> Tuple:
return tuple(x.value for x in enum_class)
def _rgb2gray(rgb: np.ndarray) -> np.ndarray:
"""Convert an RGB image to a grayscale image"""
coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=np.float32)
return (rgb @ coeffs).astype(rgb.dtype)
def _get_seam_mask(src: np.ndarray, seam: np.ndarray) -> np.ndarray:
"""Convert a list of seam column indices to a mask"""
return np.eye(src.shape[1], dtype=bool)[seam]
def _remove_seam_mask(src: np.ndarray, seam_mask: np.ndarray) -> np.ndarray:
"""Remove a seam from the source image according to the given seam_mask"""
if src.ndim == 3:
h, w, c = src.shape
seam_mask = np.broadcast_to(seam_mask[:, :, None], src.shape)
dst = src[~seam_mask].reshape((h, w - 1, c))
else:
h, w = src.shape
dst = src[~seam_mask].reshape((h, w - 1))
return dst
def _get_energy(gray: np.ndarray) -> np.ndarray:
"""Get backward energy map from the source image"""
assert gray.ndim == 2
gray = gray.astype(np.float32)
grad_x = sobel(gray, axis=1)
grad_y = sobel(gray, axis=0)
energy = np.abs(grad_x) + np.abs(grad_y)
return energy
@nb.njit(nb.int32[:](nb.float32[:, :]), cache=True)
def _get_backward_seam(energy: np.ndarray) -> np.ndarray:
"""Compute the minimum vertical seam from the backward energy map"""
h, w = energy.shape
inf = np.array([np.inf], dtype=np.float32)
cost = np.concatenate((inf, energy[0], inf))
parent = np.empty((h, w), dtype=np.int32)
base_idx = np.arange(-1, w - 1, dtype=np.int32)
for r in range(1, h):
choices = np.vstack((cost[:-2], cost[1:-1], cost[2:]))
min_idx = np.argmin(choices, axis=0) + base_idx
parent[r] = min_idx
cost[1:-1] = cost[1:-1][min_idx] + energy[r]
c = np.argmin(cost[1:-1])
seam = np.empty(h, dtype=np.int32)
for r in range(h - 1, -1, -1):
seam[r] = c
c = parent[r, c]
return seam
def _get_backward_seams(
gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
"""Compute the minimum N vertical seams using backward energy"""
h, w = gray.shape
seams = np.zeros((h, w), dtype=bool)
rows = np.arange(h, dtype=np.int32)
idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
energy = _get_energy(gray)
if aux_energy is not None:
energy += aux_energy
for _ in range(num_seams):
seam = _get_backward_seam(energy)
seams[rows, idx_map[rows, seam]] = True
seam_mask = _get_seam_mask(gray, seam)
gray = _remove_seam_mask(gray, seam_mask)
idx_map = _remove_seam_mask(idx_map, seam_mask)
if aux_energy is not None:
aux_energy = _remove_seam_mask(aux_energy, seam_mask)
# Only need to re-compute the energy in the bounding box of the seam
_, cur_w = energy.shape
lo = max(0, np.min(seam) - 1)
hi = min(cur_w, np.max(seam) + 1)
pad_lo = 1 if lo > 0 else 0
pad_hi = 1 if hi < cur_w - 1 else 0
mid_block = gray[:, lo - pad_lo : hi + pad_hi]
_, mid_w = mid_block.shape
mid_energy = _get_energy(mid_block)[:, pad_lo : mid_w - pad_hi]
if aux_energy is not None:
mid_energy += aux_energy[:, lo:hi]
energy = np.hstack((energy[:, :lo], mid_energy, energy[:, hi + 1 :]))
return seams
@nb.njit(
[
nb.int32[:](nb.float32[:, :], nb.none),
nb.int32[:](nb.float32[:, :], nb.float32[:, :]),
],
cache=True,
)
def _get_forward_seam(gray: np.ndarray, aux_energy: Optional[np.ndarray]) -> np.ndarray:
"""Compute the minimum vertical seam using forward energy"""
h, w = gray.shape
gray = np.hstack((gray[:, :1], gray, gray[:, -1:]))
inf = np.array([np.inf], dtype=np.float32)
dp = np.concatenate((inf, np.abs(gray[0, 2:] - gray[0, :-2]), inf))
parent = np.empty((h, w), dtype=np.int32)
base_idx = np.arange(-1, w - 1, dtype=np.int32)
inf = np.array([np.inf], dtype=np.float32)
for r in range(1, h):
curr_shl = gray[r, 2:]
curr_shr = gray[r, :-2]
cost_mid = np.abs(curr_shl - curr_shr)
if aux_energy is not None:
cost_mid += aux_energy[r]
prev_mid = gray[r - 1, 1:-1]
cost_left = cost_mid + np.abs(prev_mid - curr_shr)
cost_right = cost_mid + np.abs(prev_mid - curr_shl)
dp_mid = dp[1:-1]
dp_left = dp[:-2]
dp_right = dp[2:]
choices = np.vstack(
(cost_left + dp_left, cost_mid + dp_mid, cost_right + dp_right)
)
min_idx = np.argmin(choices, axis=0)
parent[r] = min_idx + base_idx
# numba does not support specifying axis in np.min, below loop is equivalent to:
# `dp_mid[:] = np.min(choices, axis=0)` or `dp_mid[:] = choices[min_idx, np.arange(w)]`
for j, i in enumerate(min_idx):
dp_mid[j] = choices[i, j]
c = np.argmin(dp[1:-1])
seam = np.empty(h, dtype=np.int32)
for r in range(h - 1, -1, -1):
seam[r] = c
c = parent[r, c]
return seam
def _get_forward_seams(
gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
"""Compute minimum N vertical seams using forward energy"""
h, w = gray.shape
seams = np.zeros((h, w), dtype=bool)
rows = np.arange(h, dtype=np.int32)
idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
for _ in range(num_seams):
seam = _get_forward_seam(gray, aux_energy)
seams[rows, idx_map[rows, seam]] = True
seam_mask = _get_seam_mask(gray, seam)
gray = _remove_seam_mask(gray, seam_mask)
idx_map = _remove_seam_mask(idx_map, seam_mask)
if aux_energy is not None:
aux_energy = _remove_seam_mask(aux_energy, seam_mask)
return seams
def _get_seams(
gray: np.ndarray, num_seams: int, energy_mode: str, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
"""Get the minimum N seams from the grayscale image"""
gray = np.asarray(gray, dtype=np.float32)
if energy_mode == EnergyMode.BACKWARD:
return _get_backward_seams(gray, num_seams, aux_energy)
elif energy_mode == EnergyMode.FORWARD:
return _get_forward_seams(gray, num_seams, aux_energy)
else:
raise ValueError(
f"expect energy_mode to be one of {_list_enum(EnergyMode)}, got {energy_mode}"
)
def _reduce_width(
src: np.ndarray,
delta_width: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Reduce the width of image by delta_width pixels"""
assert src.ndim in (2, 3) and delta_width >= 0
if src.ndim == 2:
gray = src
src_h, src_w = src.shape
dst_shape: Tuple[int, ...] = (src_h, src_w - delta_width)
else:
gray = _rgb2gray(src)
src_h, src_w, src_c = src.shape
dst_shape = (src_h, src_w - delta_width, src_c)
to_keep = ~_get_seams(gray, delta_width, energy_mode, aux_energy)
dst = src[to_keep].reshape(dst_shape)
if aux_energy is not None:
aux_energy = aux_energy[to_keep].reshape(dst_shape[:2])
return dst, aux_energy
@nb.njit(
nb.float32[:, :, :](nb.float32[:, :, :], nb.boolean[:, :], nb.int32), cache=True
)
def _insert_seams_kernel(
src: np.ndarray, seams: np.ndarray, delta_width: int
) -> np.ndarray:
"""The numba kernel for inserting seams"""
src_h, src_w, src_c = src.shape
dst = np.empty((src_h, src_w + delta_width, src_c), dtype=src.dtype)
for row in range(src_h):
dst_col = 0
for src_col in range(src_w):
if seams[row, src_col]:
left = src[row, max(src_col - 1, 0)]
right = src[row, src_col]
dst[row, dst_col] = (left + right) / 2
dst_col += 1
dst[row, dst_col] = src[row, src_col]
dst_col += 1
return dst
def _insert_seams(src: np.ndarray, seams: np.ndarray, delta_width: int) -> np.ndarray:
"""Insert multiple seams into the source image"""
dst = src.astype(np.float32)
if dst.ndim == 2:
dst = dst[:, :, None]
dst = _insert_seams_kernel(dst, seams, delta_width).astype(src.dtype)
if src.ndim == 2:
dst = dst.squeeze(-1)
return dst
def _expand_width(
src: np.ndarray,
delta_width: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Expand the width of image by delta_width pixels"""
assert src.ndim in (2, 3) and delta_width >= 0
if not 0 < step_ratio <= 1:
raise ValueError(f"expect `step_ratio` to be between (0,1], got {step_ratio}")
dst = src
while delta_width > 0:
max_step_size = max(1, round(step_ratio * dst.shape[1]))
step_size = min(max_step_size, delta_width)
gray = dst if dst.ndim == 2 else _rgb2gray(dst)
seams = _get_seams(gray, step_size, energy_mode, aux_energy)
dst = _insert_seams(dst, seams, step_size)
if aux_energy is not None:
aux_energy = _insert_seams(aux_energy, seams, step_size)
delta_width -= step_size
return dst, aux_energy
def _resize_width(
src: np.ndarray,
width: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Resize the width of image by removing vertical seams"""
assert src.size > 0 and src.ndim in (2, 3)
assert width > 0
src_w = src.shape[1]
if src_w < width:
dst, aux_energy = _expand_width(
src, width - src_w, energy_mode, aux_energy, step_ratio
)
else:
dst, aux_energy = _reduce_width(src, src_w - width, energy_mode, aux_energy)
return dst, aux_energy
def _transpose_image(src: np.ndarray) -> np.ndarray:
"""Transpose a source image in rgb or grayscale format"""
if src.ndim == 3:
dst = src.transpose((1, 0, 2))
else:
dst = src.T
return dst
def _resize_height(
src: np.ndarray,
height: int,
energy_mode: str,
aux_energy: Optional[np.ndarray],
step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
"""Resize the height of image by removing horizontal seams"""
assert src.ndim in (2, 3) and height > 0
if aux_energy is not None:
aux_energy = aux_energy.T
src = _transpose_image(src)
src, aux_energy = _resize_width(src, height, energy_mode, aux_energy, step_ratio)
src = _transpose_image(src)
if aux_energy is not None:
aux_energy = aux_energy.T
return src, aux_energy
def _check_mask(mask: np.ndarray, shape: Tuple[int, ...]) -> np.ndarray:
"""Ensure the mask to be a 2D grayscale map of specific shape"""
mask = np.asarray(mask, dtype=bool)
if mask.ndim != 2:
raise ValueError(f"expect mask to be a 2d binary map, got shape {mask.shape}")
if mask.shape != shape:
raise ValueError(
f"expect the shape of mask to match the image, got {mask.shape} vs {shape}"
)
return mask
def _check_src(src: np.ndarray) -> np.ndarray:
"""Ensure the source to be RGB or grayscale"""
src = np.asarray(src)
if src.size == 0 or src.ndim not in (2, 3):
raise ValueError(
f"expect a 3d rgb image or a 2d grayscale image, got image in shape {src.shape}"
)
return src
def seam_carving(
src: np.ndarray,
size: Optional[Tuple[int, int]] = None,
energy_mode: str = "backward",
order: str = "width-first",
keep_mask: Optional[np.ndarray] = None,
drop_mask: Optional[np.ndarray] = None,
step_ratio: float = 0.5,
) -> np.ndarray:
"""Resize the image using the content-aware seam-carving algorithm.
:param src: A source image in RGB or grayscale format.
:param size: The target size in pixels, as a 2-tuple (width, height).
:param energy_mode: Policy to compute energy for the source image. Could be
one of ``backward`` or ``forward``. If ``backward``, compute the energy
as the gradient at each pixel. If ``forward``, compute the energy as the
distances between adjacent pixels after each pixel is removed.
:param order: The order to remove horizontal and vertical seams. Could be
one of ``width-first`` or ``height-first``. In ``width-first`` mode, we
remove or insert all vertical seams first, then the horizontal ones,
while ``height-first`` is the opposite.
:param keep_mask: An optional mask where the foreground is protected from
seam removal. If not specified, no area will be protected.
:param drop_mask: An optional binary object mask to remove. If given, the
object will be removed before resizing the image to the target size.
:param step_ratio: The maximum size expansion ratio in one seam carving step.
The image will be expanded in multiple steps if target size is too large.
:return: A resized copy of the source image.
"""
src = _check_src(src)
if order not in _list_enum(OrderMode):
raise ValueError(
f"expect order to be one of {_list_enum(OrderMode)}, got {order}"
)
aux_energy = None
if keep_mask is not None:
keep_mask = _check_mask(keep_mask, src.shape[:2])
aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
aux_energy[keep_mask] += KEEP_MASK_ENERGY
# remove object if `drop_mask` is given
if drop_mask is not None:
drop_mask = _check_mask(drop_mask, src.shape[:2])
if aux_energy is None:
aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
aux_energy[drop_mask] -= DROP_MASK_ENERGY
if order == OrderMode.HEIGHT_FIRST:
src = _transpose_image(src)
aux_energy = aux_energy.T
num_seams = (aux_energy < 0).sum(1).max()
while num_seams > 0:
src, aux_energy = _reduce_width(src, num_seams, energy_mode, aux_energy)
num_seams = (aux_energy < 0).sum(1).max()
if order == OrderMode.HEIGHT_FIRST:
src = _transpose_image(src)
aux_energy = aux_energy.T
# resize image if `size` is given
if size is not None:
width, height = size
width = round(width)
height = round(height)
if width <= 0 or height <= 0:
raise ValueError(f"expect target size to be positive, got {size}")
if order == OrderMode.WIDTH_FIRST:
src, aux_energy = _resize_width(
src, width, energy_mode, aux_energy, step_ratio
)
src, aux_energy = _resize_height(
src, height, energy_mode, aux_energy, step_ratio
)
else:
src, aux_energy = _resize_height(
src, height, energy_mode, aux_energy, step_ratio
)
src, aux_energy = _resize_width(
src, width, energy_mode, aux_energy, step_ratio
)
return src
|