File size: 9,496 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import numpy as np
import os
import cv2
import yaml
from pathlib import Path
from enum import Enum
from .log import log
import subprocess
import threading
import comfy
import tempfile

here = Path(__file__).parent.resolve()

config_path = Path(here, "config.yaml")

if os.path.exists(config_path):
    config = yaml.load(open(config_path, "r"), Loader=yaml.FullLoader)

    annotator_ckpts_path = str(Path(here, config["annotator_ckpts_path"]))
    TEMP_DIR = config["custom_temp_path"]
    USE_SYMLINKS = config["USE_SYMLINKS"]
    ORT_PROVIDERS = config["EP_list"]

    if USE_SYMLINKS is None or type(USE_SYMLINKS) != bool:
        log.error("USE_SYMLINKS must be a boolean. Using False by default.")
        USE_SYMLINKS = False

    if TEMP_DIR is None:
        TEMP_DIR = tempfile.gettempdir()
    elif not os.path.isdir(TEMP_DIR):
        try:
            os.makedirs(TEMP_DIR)
        except:
            log.error("Failed to create custom temp directory. Using default.")
            TEMP_DIR = tempfile.gettempdir()

    if not os.path.isdir(annotator_ckpts_path):
        try:
            os.makedirs(annotator_ckpts_path)
        except:
            log.error("Failed to create config ckpts directory. Using default.")
            annotator_ckpts_path = str(Path(here, "./ckpts"))
else:
    annotator_ckpts_path = str(Path(here, "./ckpts"))
    TEMP_DIR = tempfile.gettempdir()
    USE_SYMLINKS = False
    ORT_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CPUExecutionProvider", "CoreMLExecutionProvider"]

os.environ['AUX_ANNOTATOR_CKPTS_PATH'] = os.getenv('AUX_ANNOTATOR_CKPTS_PATH', annotator_ckpts_path)
os.environ['AUX_TEMP_DIR'] = os.getenv('AUX_TEMP_DIR', str(TEMP_DIR))
os.environ['AUX_USE_SYMLINKS'] = os.getenv('AUX_USE_SYMLINKS', str(USE_SYMLINKS))
os.environ['AUX_ORT_PROVIDERS'] = os.getenv('AUX_ORT_PROVIDERS', str(",".join(ORT_PROVIDERS)))

log.info(f"Using ckpts path: {annotator_ckpts_path}")
log.info(f"Using symlinks: {USE_SYMLINKS}")
log.info(f"Using ort providers: {ORT_PROVIDERS}")

# Sync with theoritical limit from Comfy base
# https://github.com/comfyanonymous/ComfyUI/blob/eecd69b53a896343775bcb02a4f8349e7442ffd1/nodes.py#L45
MAX_RESOLUTION=16384

def common_annotator_call(model, tensor_image, input_batch=False, show_pbar=True, **kwargs):
    if "detect_resolution" in kwargs:
        del kwargs["detect_resolution"] #Prevent weird case?

    if "resolution" in kwargs:
        detect_resolution = kwargs["resolution"] if type(kwargs["resolution"]) == int and kwargs["resolution"] >= 64 else 512
        del kwargs["resolution"]
    else:
        detect_resolution = 512

    if input_batch:
        np_images = np.asarray(tensor_image * 255., dtype=np.uint8)
        np_results = model(np_images, output_type="np", detect_resolution=detect_resolution, **kwargs)
        return torch.from_numpy(np_results.astype(np.float32) / 255.0)

    batch_size = tensor_image.shape[0]
    if show_pbar:
        pbar = comfy.utils.ProgressBar(batch_size)
    out_tensor = None
    for i, image in enumerate(tensor_image):
        np_image = np.asarray(image.cpu() * 255., dtype=np.uint8)
        np_result = model(np_image, output_type="np", detect_resolution=detect_resolution, **kwargs)
        out = torch.from_numpy(np_result.astype(np.float32) / 255.0)
        if out_tensor is None:
            out_tensor = torch.zeros(batch_size, *out.shape, dtype=torch.float32)
        out_tensor[i] = out
        if show_pbar:
            pbar.update(1)
    return out_tensor

def define_preprocessor_inputs(**arguments):
    return dict(
        required=dict(image=INPUT.IMAGE()),
        optional=arguments
    )

class INPUT(Enum):
    def IMAGE():
        return ("IMAGE",)
    def LATENT():
        return ("LATENT",)
    def MASK():
        return ("MASK",)
    def SEED(default=0):
        return ("INT", dict(default=default, min=0, max=0xffffffffffffffff))
    def RESOLUTION(default=512, min=64, max=MAX_RESOLUTION, step=64): 
        return ("INT", dict(default=default, min=min, max=max, step=step))
    def INT(default=0, min=0, max=MAX_RESOLUTION, step=1): 
        return ("INT", dict(default=default, min=min, max=max, step=step))
    def FLOAT(default=0, min=0, max=1, step=0.01):
        return ("FLOAT", dict(default=default, min=min, max=max, step=step))
    def STRING(default='', multiline=False): 
        return ("STRING", dict(default=default, multiline=multiline))
    def COMBO(values, default=None):
        return (values, dict(default=values[0] if default is None else default))
    def BOOLEAN(default=True):
        return ("BOOLEAN", dict(default=default))



class ResizeMode(Enum):
    """

    Resize modes for ControlNet input images.

    """

    RESIZE = "Just Resize"
    INNER_FIT = "Crop and Resize"
    OUTER_FIT = "Resize and Fill"

    def int_value(self):
        if self == ResizeMode.RESIZE:
            return 0
        elif self == ResizeMode.INNER_FIT:
            return 1
        elif self == ResizeMode.OUTER_FIT:
            return 2
        assert False, "NOTREACHED"

#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/internal_controlnet/external_code.py#L89
#Replaced logger with internal log
def pixel_perfect_resolution(

        image: np.ndarray,

        target_H: int,

        target_W: int,

        resize_mode: ResizeMode,

) -> int:
    """

    Calculate the estimated resolution for resizing an image while preserving aspect ratio.



    The function first calculates scaling factors for height and width of the image based on the target

    height and width. Then, based on the chosen resize mode, it either takes the smaller or the larger

    scaling factor to estimate the new resolution.



    If the resize mode is OUTER_FIT, the function uses the smaller scaling factor, ensuring the whole image

    fits within the target dimensions, potentially leaving some empty space.



    If the resize mode is not OUTER_FIT, the function uses the larger scaling factor, ensuring the target

    dimensions are fully filled, potentially cropping the image.



    After calculating the estimated resolution, the function prints some debugging information.



    Args:

        image (np.ndarray): A 3D numpy array representing an image. The dimensions represent [height, width, channels].

        target_H (int): The target height for the image.

        target_W (int): The target width for the image.

        resize_mode (ResizeMode): The mode for resizing.



    Returns:

        int: The estimated resolution after resizing.

    """
    raw_H, raw_W, _ = image.shape

    k0 = float(target_H) / float(raw_H)
    k1 = float(target_W) / float(raw_W)

    if resize_mode == ResizeMode.OUTER_FIT:
        estimation = min(k0, k1) * float(min(raw_H, raw_W))
    else:
        estimation = max(k0, k1) * float(min(raw_H, raw_W))

    log.debug(f"Pixel Perfect Computation:")
    log.debug(f"resize_mode = {resize_mode}")
    log.debug(f"raw_H = {raw_H}")
    log.debug(f"raw_W = {raw_W}")
    log.debug(f"target_H = {target_H}")
    log.debug(f"target_W = {target_W}")
    log.debug(f"estimation = {estimation}")

    return int(np.round(estimation))

#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/scripts/controlnet.py#L404
def safe_numpy(x):
    # A very safe method to make sure that Apple/Mac works
    y = x

    # below is very boring but do not change these. If you change these Apple or Mac may fail.
    y = y.copy()
    y = np.ascontiguousarray(y)
    y = y.copy()
    return y

#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/scripts/utils.py#L140
def get_unique_axis0(data):
    arr = np.asanyarray(data)
    idxs = np.lexsort(arr.T)
    arr = arr[idxs]
    unique_idxs = np.empty(len(arr), dtype=np.bool_)
    unique_idxs[:1] = True
    unique_idxs[1:] = np.any(arr[:-1, :] != arr[1:, :], axis=-1)
    return arr[unique_idxs]

#Ref: https://github.com/ltdrdata/ComfyUI-Manager/blob/284e90dc8296a2e1e4f14b4b2d10fba2f52f0e53/__init__.py#L14
def handle_stream(stream, prefix):
    for line in stream:
        print(prefix, line, end="")


def run_script(cmd, cwd='.'):
    process = subprocess.Popen(cmd, cwd=cwd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)

    stdout_thread = threading.Thread(target=handle_stream, args=(process.stdout, ""))
    stderr_thread = threading.Thread(target=handle_stream, args=(process.stderr, "[!]"))

    stdout_thread.start()
    stderr_thread.start()

    stdout_thread.join()
    stderr_thread.join()

    return process.wait()

def nms(x, t, s):
    x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)

    f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
    f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
    f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
    f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)

    y = np.zeros_like(x)

    for f in [f1, f2, f3, f4]:
        np.putmask(y, cv2.dilate(x, kernel=f) == x, x)

    z = np.zeros_like(y, dtype=np.uint8)
    z[y > t] = 255
    return z