File size: 8,230 Bytes
c37b2dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from pathlib import Path
from PIL import Image

import impact.core as core
import cv2
import numpy as np
from torchvision.transforms.functional import to_pil_image
import torch

orig_torch_load = torch.load

try:
    from ultralytics import YOLO
except Exception as e:
    print(e)
    print(f"\n!!!!!\n\n[ComfyUI-Impact-Subpack] If this error occurs, please check the following link:\n\thttps://github.com/ltdrdata/ComfyUI-Impact-Pack/blob/Main/troubleshooting/TROUBLESHOOTING.md\n\n!!!!!\n")
    raise e

# HOTFIX: https://github.com/ltdrdata/ComfyUI-Impact-Pack/issues/754
# importing YOLO breaking original torch.load capabilities
torch.load = orig_torch_load  

def load_yolo(model_path: str):
    try:
        return YOLO(model_path)
    except ModuleNotFoundError:
        # https://github.com/ultralytics/ultralytics/issues/3856
        YOLO("yolov8n.pt")
        return YOLO(model_path)


def inference_bbox(

    model,

    image: Image.Image,

    confidence: float = 0.3,

    device: str = "",

):
    pred = model(image, conf=confidence, device=device)

    bboxes = pred[0].boxes.xyxy.cpu().numpy()
    cv2_image = np.array(image)
    if len(cv2_image.shape) == 3:
        cv2_image = cv2_image[:, :, ::-1].copy()  # Convert RGB to BGR for cv2 processing
    else:
        # Handle the grayscale image here
        # For example, you might want to convert it to a 3-channel grayscale image for consistency:
        cv2_image = cv2.cvtColor(cv2_image, cv2.COLOR_GRAY2BGR)
    cv2_gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)

    segms = []
    for x0, y0, x1, y1 in bboxes:
        cv2_mask = np.zeros(cv2_gray.shape, np.uint8)
        cv2.rectangle(cv2_mask, (int(x0), int(y0)), (int(x1), int(y1)), 255, -1)
        cv2_mask_bool = cv2_mask.astype(bool)
        segms.append(cv2_mask_bool)

    n, m = bboxes.shape
    if n == 0:
        return [[], [], [], []]

    results = [[], [], [], []]
    for i in range(len(bboxes)):
        results[0].append(pred[0].names[int(pred[0].boxes[i].cls.item())])
        results[1].append(bboxes[i])
        results[2].append(segms[i])
        results[3].append(pred[0].boxes[i].conf.cpu().numpy())

    return results


def inference_segm(

    model,

    image: Image.Image,

    confidence: float = 0.3,

    device: str = "",

):
    pred = model(image, conf=confidence, device=device)

    bboxes = pred[0].boxes.xyxy.cpu().numpy()
    n, m = bboxes.shape
    if n == 0:
        return [[], [], [], []]

    # NOTE: masks.data will be None when n == 0
    segms = pred[0].masks.data.cpu().numpy()

    h_segms = segms.shape[1]
    w_segms = segms.shape[2]
    h_orig = image.size[1]
    w_orig = image.size[0]
    ratio_segms = h_segms / w_segms
    ratio_orig = h_orig / w_orig

    if ratio_segms == ratio_orig:
        h_gap = 0
        w_gap = 0
    elif ratio_segms > ratio_orig:
        h_gap = int((ratio_segms - ratio_orig) * h_segms)
        w_gap = 0
    else:
        h_gap = 0
        ratio_segms = w_segms / h_segms
        ratio_orig = w_orig / h_orig
        w_gap = int((ratio_segms - ratio_orig) * w_segms)

    results = [[], [], [], []]
    for i in range(len(bboxes)):
        results[0].append(pred[0].names[int(pred[0].boxes[i].cls.item())])
        results[1].append(bboxes[i])

        mask = torch.from_numpy(segms[i])
        mask = mask[h_gap:mask.shape[0] - h_gap, w_gap:mask.shape[1] - w_gap]

        scaled_mask = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(image.size[1], image.size[0]),
                                                      mode='bilinear', align_corners=False)
        scaled_mask = scaled_mask.squeeze().squeeze()

        results[2].append(scaled_mask.numpy())
        results[3].append(pred[0].boxes[i].conf.cpu().numpy())

    return results


class UltraBBoxDetector:
    bbox_model = None

    def __init__(self, bbox_model):
        self.bbox_model = bbox_model

    def detect(self, image, threshold, dilation, crop_factor, drop_size=1, detailer_hook=None):
        drop_size = max(drop_size, 1)
        detected_results = inference_bbox(self.bbox_model, core.tensor2pil(image), threshold)
        segmasks = core.create_segmasks(detected_results)

        if dilation > 0:
            segmasks = core.dilate_masks(segmasks, dilation)

        items = []
        h = image.shape[1]
        w = image.shape[2]

        for x, label in zip(segmasks, detected_results[0]):
            item_bbox = x[0]
            item_mask = x[1]

            y1, x1, y2, x2 = item_bbox

            if x2 - x1 > drop_size and y2 - y1 > drop_size:  # minimum dimension must be (2,2) to avoid squeeze issue
                crop_region = core.make_crop_region(w, h, item_bbox, crop_factor)

                if detailer_hook is not None:
                    crop_region = detailer_hook.post_crop_region(w, h, item_bbox, crop_region)

                cropped_image = core.crop_image(image, crop_region)
                cropped_mask = core.crop_ndarray2(item_mask, crop_region)
                confidence = x[2]
                # bbox_size = (item_bbox[2]-item_bbox[0],item_bbox[3]-item_bbox[1]) # (w,h)

                item = core.SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, label, None)

                items.append(item)

        shape = image.shape[1], image.shape[2]
        segs = shape, items

        if detailer_hook is not None and hasattr(detailer_hook, "post_detection"):
            segs = detailer_hook.post_detection(segs)

        return segs

    def detect_combined(self, image, threshold, dilation):
        detected_results = inference_bbox(self.bbox_model, core.tensor2pil(image), threshold)
        segmasks = core.create_segmasks(detected_results)
        if dilation > 0:
            segmasks = core.dilate_masks(segmasks, dilation)

        return core.combine_masks(segmasks)

    def setAux(self, x):
        pass


class UltraSegmDetector:
    bbox_model = None

    def __init__(self, bbox_model):
        self.bbox_model = bbox_model

    def detect(self, image, threshold, dilation, crop_factor, drop_size=1, detailer_hook=None):
        drop_size = max(drop_size, 1)
        detected_results = inference_segm(self.bbox_model, core.tensor2pil(image), threshold)
        segmasks = core.create_segmasks(detected_results)

        if dilation > 0:
            segmasks = core.dilate_masks(segmasks, dilation)

        items = []
        h = image.shape[1]
        w = image.shape[2]

        for x, label in zip(segmasks, detected_results[0]):
            item_bbox = x[0]
            item_mask = x[1]

            y1, x1, y2, x2 = item_bbox

            if x2 - x1 > drop_size and y2 - y1 > drop_size:  # minimum dimension must be (2,2) to avoid squeeze issue
                crop_region = core.make_crop_region(w, h, item_bbox, crop_factor)

                if detailer_hook is not None:
                    crop_region = detailer_hook.post_crop_region(w, h, item_bbox, crop_region)

                cropped_image = core.crop_image(image, crop_region)
                cropped_mask = core.crop_ndarray2(item_mask, crop_region)
                confidence = x[2]
                # bbox_size = (item_bbox[2]-item_bbox[0],item_bbox[3]-item_bbox[1]) # (w,h)

                item = core.SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, label, None)

                items.append(item)

        shape = image.shape[1], image.shape[2]
        segs = shape, items

        if detailer_hook is not None and hasattr(detailer_hook, "post_detection"):
            segs = detailer_hook.post_detection(segs)

        return segs

    def detect_combined(self, image, threshold, dilation):
        detected_results = inference_segm(self.bbox_model, core.tensor2pil(image), threshold)
        segmasks = core.create_segmasks(detected_results)
        if dilation > 0:
            segmasks = core.dilate_masks(segmasks, dilation)

        return core.combine_masks(segmasks)

    def setAux(self, x):
        pass