File size: 9,696 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681fa96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from .log import log
from .utils import ResizeMode, safe_numpy
import numpy as np
import torch
import cv2
from .utils import get_unique_axis0
from .lvminthin import nake_nms, lvmin_thin

MAX_IMAGEGEN_RESOLUTION = 8192 #https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L42
RESIZE_MODES = [ResizeMode.RESIZE.value, ResizeMode.INNER_FIT.value, ResizeMode.OUTER_FIT.value]

#Port from https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/internal_controlnet/external_code.py#L89
class PixelPerfectResolution:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "original_image": ("IMAGE", ),
                "image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
                "image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
                #https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
                "resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
            }
        }
    
    RETURN_TYPES = ("INT",)
    RETURN_NAMES = ("RESOLUTION (INT)", )
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors"

    def execute(self, original_image, image_gen_width, image_gen_height, resize_mode):
        _, raw_H, raw_W, _ = original_image.shape

        k0 = float(image_gen_height) / float(raw_H)
        k1 = float(image_gen_width) / float(raw_W)

        if resize_mode == ResizeMode.OUTER_FIT.value:
            estimation = min(k0, k1) * float(min(raw_H, raw_W))
        else:
            estimation = max(k0, k1) * float(min(raw_H, raw_W))

        log.debug(f"Pixel Perfect Computation:")
        log.debug(f"resize_mode = {resize_mode}")
        log.debug(f"raw_H = {raw_H}")
        log.debug(f"raw_W = {raw_W}")
        log.debug(f"target_H = {image_gen_height}")
        log.debug(f"target_W = {image_gen_width}")
        log.debug(f"estimation = {estimation}")

        return (int(np.round(estimation)), )

class HintImageEnchance:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "hint_image": ("IMAGE", ),
                "image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
                "image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
                #https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
                "resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
            }
        }
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors"
    def execute(self, hint_image, image_gen_width, image_gen_height, resize_mode):
        outs = []
        for single_hint_image in hint_image:
            np_hint_image = np.asarray(single_hint_image * 255., dtype=np.uint8)

            if resize_mode == ResizeMode.RESIZE.value:
                np_hint_image = self.execute_resize(np_hint_image, image_gen_width, image_gen_height)
            elif resize_mode == ResizeMode.OUTER_FIT.value:
                np_hint_image = self.execute_outer_fit(np_hint_image, image_gen_width, image_gen_height)
            else:
                np_hint_image = self.execute_inner_fit(np_hint_image, image_gen_width, image_gen_height)
            
            outs.append(torch.from_numpy(np_hint_image.astype(np.float32) / 255.0))
        
        return (torch.stack(outs, dim=0),)
    
    def execute_resize(self, detected_map, w, h):
        detected_map = self.high_quality_resize(detected_map, (w, h))
        detected_map = safe_numpy(detected_map)
        return detected_map
    
    def execute_outer_fit(self, detected_map, w, h):
        old_h, old_w, _ = detected_map.shape
        old_w = float(old_w)
        old_h = float(old_h)
        k0 = float(h) / old_h
        k1 = float(w) / old_w
        safeint = lambda x: int(np.round(x))
        k = min(k0, k1)
        
        borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
        high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
        if len(high_quality_border_color) == 4:
            # Inpaint hijack
            high_quality_border_color[3] = 255
        high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
        detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
        new_h, new_w, _ = detected_map.shape
        pad_h = max(0, (h - new_h) // 2)
        pad_w = max(0, (w - new_w) // 2)
        high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
        detected_map = high_quality_background
        detected_map = safe_numpy(detected_map)
        return detected_map
    
    def execute_inner_fit(self, detected_map, w, h):
        old_h, old_w, _ = detected_map.shape
        old_w = float(old_w)
        old_h = float(old_h)
        k0 = float(h) / old_h
        k1 = float(w) / old_w
        safeint = lambda x: int(np.round(x))
        k = max(k0, k1)

        detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
        new_h, new_w, _ = detected_map.shape
        pad_h = max(0, (new_h - h) // 2)
        pad_w = max(0, (new_w - w) // 2)
        detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
        detected_map = safe_numpy(detected_map)
        return detected_map

    def high_quality_resize(self, x, size):
        # Written by lvmin
        # Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges

        inpaint_mask = None
        if x.ndim == 3 and x.shape[2] == 4:
            inpaint_mask = x[:, :, 3]
            x = x[:, :, 0:3]

        if x.shape[0] != size[1] or x.shape[1] != size[0]:
            new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
            new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
            unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
            is_one_pixel_edge = False
            is_binary = False
            if unique_color_count == 2:
                is_binary = np.min(x) < 16 and np.max(x) > 240
                if is_binary:
                    xc = x
                    xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
                    xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
                    one_pixel_edge_count = np.where(xc < x)[0].shape[0]
                    all_edge_count = np.where(x > 127)[0].shape[0]
                    is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count

            if 2 < unique_color_count < 200:
                interpolation = cv2.INTER_NEAREST
            elif new_size_is_smaller:
                interpolation = cv2.INTER_AREA
            else:
                interpolation = cv2.INTER_CUBIC  # Must be CUBIC because we now use nms. NEVER CHANGE THIS

            y = cv2.resize(x, size, interpolation=interpolation)
            if inpaint_mask is not None:
                inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)

            if is_binary:
                y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
                if is_one_pixel_edge:
                    y = nake_nms(y)
                    _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                    y = lvmin_thin(y, prunings=new_size_is_bigger)
                else:
                    _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                y = np.stack([y] * 3, axis=2)
        else:
            y = x

        if inpaint_mask is not None:
            inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
            inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
            y = np.concatenate([y, inpaint_mask], axis=2)

        return y


class ImageGenResolutionFromLatent:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": { "latent": ("LATENT", ) }
        }
    
    RETURN_TYPES = ("INT", "INT")
    RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors"

    def execute(self, latent):
        _, _, H, W = latent["samples"].shape
        return (W * 8, H * 8)

class ImageGenResolutionFromImage:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": { "image": ("IMAGE", ) }
        }
    
    RETURN_TYPES = ("INT", "INT")
    RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
    FUNCTION = "execute"

    CATEGORY = "ControlNet Preprocessors"

    def execute(self, image):
        _, H, W, _ = image.shape
        return (W, H)
    
NODE_CLASS_MAPPINGS = {
    "PixelPerfectResolution": PixelPerfectResolution,
    "ImageGenResolutionFromImage": ImageGenResolutionFromImage,
    "ImageGenResolutionFromLatent": ImageGenResolutionFromLatent,
    "HintImageEnchance": HintImageEnchance
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "PixelPerfectResolution": "Pixel Perfect Resolution",
    "ImageGenResolutionFromImage": "Generation Resolution From Image",
    "ImageGenResolutionFromLatent": "Generation Resolution From Latent",
    "HintImageEnchance": "Enchance And Resize Hint Images"
}