File size: 3,042 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import logging
from .constants import *


_logger = logging.getLogger(__name__)


def resolve_data_config(args, default_cfg={}, model=None, use_test_size=False, verbose=False):
    new_config = {}
    default_cfg = default_cfg
    if not default_cfg and model is not None and hasattr(model, 'default_cfg'):
        default_cfg = model.default_cfg

    # Resolve input/image size
    in_chans = 3
    if 'chans' in args and args['chans'] is not None:
        in_chans = args['chans']

    input_size = (in_chans, 224, 224)
    if 'input_size' in args and args['input_size'] is not None:
        assert isinstance(args['input_size'], (tuple, list))
        assert len(args['input_size']) == 3
        input_size = tuple(args['input_size'])
        in_chans = input_size[0]  # input_size overrides in_chans
    elif 'img_size' in args and args['img_size'] is not None:
        assert isinstance(args['img_size'], int)
        input_size = (in_chans, args['img_size'], args['img_size'])
    else:
        if use_test_size and 'test_input_size' in default_cfg:
            input_size = default_cfg['test_input_size']
        elif 'input_size' in default_cfg:
            input_size = default_cfg['input_size']
    new_config['input_size'] = input_size

    # resolve interpolation method
    new_config['interpolation'] = 'bicubic'
    if 'interpolation' in args and args['interpolation']:
        new_config['interpolation'] = args['interpolation']
    elif 'interpolation' in default_cfg:
        new_config['interpolation'] = default_cfg['interpolation']

    # resolve dataset + model mean for normalization
    new_config['mean'] = IMAGENET_DEFAULT_MEAN
    if 'mean' in args and args['mean'] is not None:
        mean = tuple(args['mean'])
        if len(mean) == 1:
            mean = tuple(list(mean) * in_chans)
        else:
            assert len(mean) == in_chans
        new_config['mean'] = mean
    elif 'mean' in default_cfg:
        new_config['mean'] = default_cfg['mean']

    # resolve dataset + model std deviation for normalization
    new_config['std'] = IMAGENET_DEFAULT_STD
    if 'std' in args and args['std'] is not None:
        std = tuple(args['std'])
        if len(std) == 1:
            std = tuple(list(std) * in_chans)
        else:
            assert len(std) == in_chans
        new_config['std'] = std
    elif 'std' in default_cfg:
        new_config['std'] = default_cfg['std']

    # resolve default crop percentage
    crop_pct = DEFAULT_CROP_PCT
    if 'crop_pct' in args and args['crop_pct'] is not None:
        crop_pct = args['crop_pct']
    else:
        if use_test_size and 'test_crop_pct' in default_cfg:
            crop_pct = default_cfg['test_crop_pct']
        elif 'crop_pct' in default_cfg:
            crop_pct = default_cfg['crop_pct']
    new_config['crop_pct'] = crop_pct

    if verbose:
        _logger.info('Data processing configuration for current model + dataset:')
        for n, v in new_config.items():
            _logger.info('\t%s: %s' % (n, str(v)))

    return new_config