File size: 16,233 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
""" Class-Attention in Image Transformers (CaiT)

Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239

Original code and weights from https://github.com/facebookresearch/deit, copyright below

Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
from copy import deepcopy
from functools import partial

import torch
import torch.nn as nn

from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg, checkpoint_seq
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_
from .registry import register_model


__all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn']


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None,
        'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = dict(
    cait_xxs24_224=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth',
        input_size=(3, 224, 224),
    ),
    cait_xxs24_384=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth',
    ),
    cait_xxs36_224=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth',
        input_size=(3, 224, 224),
    ),
    cait_xxs36_384=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth',
    ),
    cait_xs24_384=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth',
    ),
    cait_s24_224=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/S24_224.pth',
        input_size=(3, 224, 224),
    ),
    cait_s24_384=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/S24_384.pth',
    ),
    cait_s36_384=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/S36_384.pth',
    ),
    cait_m36_384=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/M36_384.pth',
    ),
    cait_m48_448=_cfg(
        url='https://dl.fbaipublicfiles.com/deit/M48_448.pth',
        input_size=(3, 448, 448),
    ),
)


class ClassAttn(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to do CA 
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.k = nn.Linear(dim, dim, bias=qkv_bias)
        self.v = nn.Linear(dim, dim, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        q = q * self.scale
        v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        attn = (q @ k.transpose(-2, -1))
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C)
        x_cls = self.proj(x_cls)
        x_cls = self.proj_drop(x_cls)

        return x_cls


class LayerScaleBlockClassAttn(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to add CA and LayerScale
    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=ClassAttn,
            mlp_block=Mlp, init_values=1e-4):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = attn_block(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
        self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x, x_cls):
        u = torch.cat((x_cls, x), dim=1)
        x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u)))
        x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls)))
        return x_cls


class TalkingHeadAttn(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf)
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()

        self.num_heads = num_heads

        head_dim = dim // num_heads

        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)

        self.proj = nn.Linear(dim, dim)

        self.proj_l = nn.Linear(num_heads, num_heads)
        self.proj_w = nn.Linear(num_heads, num_heads)

        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1))

        attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        attn = attn.softmax(dim=-1)

        attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LayerScaleBlock(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to add layerScale
    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=TalkingHeadAttn,
            mlp_block=Mlp, init_values=1e-4):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = attn_block(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
        self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
        x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class Cait(nn.Module):
    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
    # with slight modifications to adapt to our cait models
    def __init__(
            self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token',
            embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True,
            drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
            block_layers=LayerScaleBlock,
            block_layers_token=LayerScaleBlockClassAttn,
            patch_layer=PatchEmbed,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            act_layer=nn.GELU,
            attn_block=TalkingHeadAttn,
            mlp_block=Mlp,
            init_values=1e-4,
            attn_block_token_only=ClassAttn,
            mlp_block_token_only=Mlp,
            depth_token_only=2,
            mlp_ratio_token_only=4.0
    ):
        super().__init__()
        assert global_pool in ('', 'token', 'avg')

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = embed_dim
        self.grad_checkpointing = False

        self.patch_embed = patch_layer(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)

        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [drop_path_rate for i in range(depth)]
        self.blocks = nn.Sequential(*[
            block_layers(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                act_layer=act_layer, attn_block=attn_block, mlp_block=mlp_block, init_values=init_values)
            for i in range(depth)])

        self.blocks_token_only = nn.ModuleList([
            block_layers_token(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_token_only, qkv_bias=qkv_bias,
                drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=norm_layer,
                act_layer=act_layer, attn_block=attn_block_token_only,
                mlp_block=mlp_block_token_only, init_values=init_values)
            for i in range(depth_token_only)])

        self.norm = norm_layer(embed_dim)

        self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        def _matcher(name):
            if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]):
                return 0
            elif name.startswith('blocks.'):
                return int(name.split('.')[1]) + 1
            elif name.startswith('blocks_token_only.'):
                # overlap token only blocks with last blocks
                to_offset = len(self.blocks) - len(self.blocks_token_only) + 1
                return int(name.split('.')[1]) + to_offset
            elif name.startswith('norm.'):
                return len(self.blocks)
            else:
                return float('inf')
        return _matcher

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('', 'token', 'avg')
            self.global_pool = global_pool
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = x + self.pos_embed
        x = self.pos_drop(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        for i, blk in enumerate(self.blocks_token_only):
            cls_tokens = blk(x, cls_tokens)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def checkpoint_filter_fn(state_dict, model=None):
    if 'model' in state_dict:
        state_dict = state_dict['model']
    checkpoint_no_module = {}
    for k, v in state_dict.items():
        checkpoint_no_module[k.replace('module.', '')] = v
    return checkpoint_no_module


def _create_cait(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    model = build_model_with_cfg(
        Cait, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        **kwargs)
    return model


@register_model
def cait_xxs24_224(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs)
    model = _create_cait('cait_xxs24_224', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_xxs24_384(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs)
    model = _create_cait('cait_xxs24_384', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_xxs36_224(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs)
    model = _create_cait('cait_xxs36_224', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_xxs36_384(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs)
    model = _create_cait('cait_xxs36_384', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_xs24_384(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5, **kwargs)
    model = _create_cait('cait_xs24_384', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_s24_224(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs)
    model = _create_cait('cait_s24_224', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_s24_384(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs)
    model = _create_cait('cait_s24_384', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_s36_384(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6, **kwargs)
    model = _create_cait('cait_s36_384', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_m36_384(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6, **kwargs)
    model = _create_cait('cait_m36_384', pretrained=pretrained, **model_args)
    return model


@register_model
def cait_m48_448(pretrained=False, **kwargs):
    model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6, **kwargs)
    model = _create_cait('cait_m48_448', pretrained=pretrained, **model_args)
    return model