File size: 18,952 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
""" Deep Layer Aggregation and DLA w/ Res2Net
DLA original adapted from Official Pytorch impl at:
DLA Paper: `Deep Layer Aggregation` - https://arxiv.org/abs/1707.06484

Res2Net additions from: https://github.com/gasvn/Res2Net/
Res2Net Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169
"""
import math
from typing import List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import create_classifier
from .registry import register_model

__all__ = ['DLA']


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bilinear',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'base_layer.0', 'classifier': 'fc',
        **kwargs
    }


default_cfgs = {
    'dla34': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla34-2b83ff04.pth'),
    'dla46_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46_c-9b68d685.pth'),
    'dla46x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46x_c-6bc5b5c8.pth'),
    'dla60x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x_c-a38e054a.pth'),
    'dla60': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60-9e91bd4d.pth'),
    'dla60x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x-6818f6bb.pth'),
    'dla102': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102-21f57b54.pth'),
    'dla102x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x-7ec0aa2a.pth'),
    'dla102x2': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x2-ac4239c4.pth'),
    'dla169': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla169-7c767967.pth'),
    'dla60_res2net': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth'),
    'dla60_res2next': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth'),
}


class DlaBasic(nn.Module):
    """DLA Basic"""

    def __init__(self, inplanes, planes, stride=1, dilation=1, **_):
        super(DlaBasic, self).__init__()
        self.conv1 = nn.Conv2d(
            inplanes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(
            planes, planes, kernel_size=3, stride=1, padding=dilation, bias=False, dilation=dilation)
        self.bn2 = nn.BatchNorm2d(planes)
        self.stride = stride

    def forward(self, x, shortcut=None, children: Optional[List[torch.Tensor]] = None):
        if shortcut is None:
            shortcut = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += shortcut
        out = self.relu(out)

        return out


class DlaBottleneck(nn.Module):
    """DLA/DLA-X Bottleneck"""
    expansion = 2

    def __init__(self, inplanes, outplanes, stride=1, dilation=1, cardinality=1, base_width=64):
        super(DlaBottleneck, self).__init__()
        self.stride = stride
        mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
        mid_planes = mid_planes // self.expansion

        self.conv1 = nn.Conv2d(inplanes, mid_planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_planes)
        self.conv2 = nn.Conv2d(
            mid_planes, mid_planes, kernel_size=3, stride=stride, padding=dilation,
            bias=False, dilation=dilation, groups=cardinality)
        self.bn2 = nn.BatchNorm2d(mid_planes)
        self.conv3 = nn.Conv2d(mid_planes, outplanes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(outplanes)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
        if shortcut is None:
            shortcut = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += shortcut
        out = self.relu(out)

        return out


class DlaBottle2neck(nn.Module):
    """ Res2Net/Res2NeXT DLA Bottleneck
    Adapted from https://github.com/gasvn/Res2Net/blob/master/dla.py
    """
    expansion = 2

    def __init__(self, inplanes, outplanes, stride=1, dilation=1, scale=4, cardinality=8, base_width=4):
        super(DlaBottle2neck, self).__init__()
        self.is_first = stride > 1
        self.scale = scale
        mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
        mid_planes = mid_planes // self.expansion
        self.width = mid_planes

        self.conv1 = nn.Conv2d(inplanes, mid_planes * scale, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_planes * scale)

        num_scale_convs = max(1, scale - 1)
        convs = []
        bns = []
        for _ in range(num_scale_convs):
            convs.append(nn.Conv2d(
                mid_planes, mid_planes, kernel_size=3, stride=stride,
                padding=dilation, dilation=dilation, groups=cardinality, bias=False))
            bns.append(nn.BatchNorm2d(mid_planes))
        self.convs = nn.ModuleList(convs)
        self.bns = nn.ModuleList(bns)
        self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) if self.is_first else None

        self.conv3 = nn.Conv2d(mid_planes * scale, outplanes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(outplanes)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
        if shortcut is None:
            shortcut = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        spx = torch.split(out, self.width, 1)
        spo = []
        sp = spx[0]  # redundant, for torchscript
        for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
            if i == 0 or self.is_first:
                sp = spx[i]
            else:
                sp = sp + spx[i]
            sp = conv(sp)
            sp = bn(sp)
            sp = self.relu(sp)
            spo.append(sp)
        if self.scale > 1:
            if self.pool is not None:  # self.is_first == True, None check for torchscript
                spo.append(self.pool(spx[-1]))
            else:
                spo.append(spx[-1])
        out = torch.cat(spo, 1)

        out = self.conv3(out)
        out = self.bn3(out)

        out += shortcut
        out = self.relu(out)

        return out


class DlaRoot(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, shortcut):
        super(DlaRoot, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.shortcut = shortcut

    def forward(self, x_children: List[torch.Tensor]):
        x = self.conv(torch.cat(x_children, 1))
        x = self.bn(x)
        if self.shortcut:
            x += x_children[0]
        x = self.relu(x)

        return x


class DlaTree(nn.Module):
    def __init__(
            self, levels, block, in_channels, out_channels, stride=1, dilation=1, cardinality=1,
            base_width=64, level_root=False, root_dim=0, root_kernel_size=1, root_shortcut=False):
        super(DlaTree, self).__init__()
        if root_dim == 0:
            root_dim = 2 * out_channels
        if level_root:
            root_dim += in_channels
        self.downsample = nn.MaxPool2d(stride, stride=stride) if stride > 1 else nn.Identity()
        self.project = nn.Identity()
        cargs = dict(dilation=dilation, cardinality=cardinality, base_width=base_width)
        if levels == 1:
            self.tree1 = block(in_channels, out_channels, stride, **cargs)
            self.tree2 = block(out_channels, out_channels, 1, **cargs)
            if in_channels != out_channels:
                # NOTE the official impl/weights have  project layers in levels > 1 case that are never
                # used, I've moved the project layer here to avoid wasted params but old checkpoints will
                # need strict=False while loading.
                self.project = nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
                    nn.BatchNorm2d(out_channels))
            self.root = DlaRoot(root_dim, out_channels, root_kernel_size, root_shortcut)
        else:
            cargs.update(dict(root_kernel_size=root_kernel_size, root_shortcut=root_shortcut))
            self.tree1 = DlaTree(
                levels - 1, block, in_channels, out_channels, stride, root_dim=0, **cargs)
            self.tree2 = DlaTree(
                levels - 1, block, out_channels, out_channels, root_dim=root_dim + out_channels, **cargs)
            self.root = None
        self.level_root = level_root
        self.root_dim = root_dim
        self.levels = levels

    def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
        if children is None:
            children = []
        bottom = self.downsample(x)
        shortcut = self.project(bottom)
        if self.level_root:
            children.append(bottom)
        x1 = self.tree1(x, shortcut)
        if self.root is not None:  # levels == 1
            x2 = self.tree2(x1)
            x = self.root([x2, x1] + children)
        else:
            children.append(x1)
            x = self.tree2(x1, None, children)
        return x


class DLA(nn.Module):
    def __init__(
            self, levels, channels, output_stride=32, num_classes=1000, in_chans=3, global_pool='avg',
            cardinality=1, base_width=64, block=DlaBottle2neck, shortcut_root=False, drop_rate=0.0):
        super(DLA, self).__init__()
        self.channels = channels
        self.num_classes = num_classes
        self.cardinality = cardinality
        self.base_width = base_width
        self.drop_rate = drop_rate
        assert output_stride == 32  # FIXME support dilation

        self.base_layer = nn.Sequential(
            nn.Conv2d(in_chans, channels[0], kernel_size=7, stride=1, padding=3, bias=False),
            nn.BatchNorm2d(channels[0]),
            nn.ReLU(inplace=True))
        self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
        self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2)
        cargs = dict(cardinality=cardinality, base_width=base_width, root_shortcut=shortcut_root)
        self.level2 = DlaTree(levels[2], block, channels[1], channels[2], 2, level_root=False, **cargs)
        self.level3 = DlaTree(levels[3], block, channels[2], channels[3], 2, level_root=True, **cargs)
        self.level4 = DlaTree(levels[4], block, channels[3], channels[4], 2, level_root=True, **cargs)
        self.level5 = DlaTree(levels[5], block, channels[4], channels[5], 2, level_root=True, **cargs)
        self.feature_info = [
            dict(num_chs=channels[0], reduction=1, module='level0'),  # rare to have a meaningful stride 1 level
            dict(num_chs=channels[1], reduction=2, module='level1'),
            dict(num_chs=channels[2], reduction=4, module='level2'),
            dict(num_chs=channels[3], reduction=8, module='level3'),
            dict(num_chs=channels[4], reduction=16, module='level4'),
            dict(num_chs=channels[5], reduction=32, module='level5'),
        ]

        self.num_features = channels[-1]
        self.global_pool, self.fc = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
        self.flatten = nn.Flatten(1) if global_pool else nn.Identity()

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
        modules = []
        for i in range(convs):
            modules.extend([
                nn.Conv2d(
                    inplanes, planes, kernel_size=3, stride=stride if i == 0 else 1,
                    padding=dilation, bias=False, dilation=dilation),
                nn.BatchNorm2d(planes),
                nn.ReLU(inplace=True)])
            inplanes = planes
        return nn.Sequential(*modules)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^base_layer',
            blocks=r'^level(\d+)' if coarse else [
                # an unusual arch, this achieves somewhat more granularity without getting super messy
                (r'^level(\d+)\.tree(\d+)', None),
                (r'^level(\d+)\.root', (2,)),
                (r'^level(\d+)', (1,))
            ]
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    @torch.jit.ignore
    def get_classifier(self):
        return self.fc

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.global_pool, self.fc = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
        self.flatten = nn.Flatten(1) if global_pool else nn.Identity()

    def forward_features(self, x):
        x = self.base_layer(x)
        x = self.level0(x)
        x = self.level1(x)
        x = self.level2(x)
        x = self.level3(x)
        x = self.level4(x)
        x = self.level5(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        x = self.global_pool(x)
        if self.drop_rate > 0.:
            x = F.dropout(x, p=self.drop_rate, training=self.training)
        if pre_logits:
            return x.flatten(1)
        else:
            x = self.fc(x)
            return self.flatten(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_dla(variant, pretrained=False, **kwargs):
    return build_model_with_cfg(
        DLA, variant, pretrained,
        pretrained_strict=False,
        feature_cfg=dict(out_indices=(1, 2, 3, 4, 5)),
        **kwargs)


@register_model
def dla60_res2net(pretrained=False, **kwargs):
    model_kwargs = dict(
        levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
        block=DlaBottle2neck, cardinality=1, base_width=28, **kwargs)
    return _create_dla('dla60_res2net', pretrained, **model_kwargs)


@register_model
def dla60_res2next(pretrained=False,**kwargs):
    model_kwargs = dict(
        levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
        block=DlaBottle2neck, cardinality=8, base_width=4, **kwargs)
    return _create_dla('dla60_res2next', pretrained, **model_kwargs)


@register_model
def dla34(pretrained=False, **kwargs):  # DLA-34
    model_kwargs = dict(
        levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 128, 256, 512],
        block=DlaBasic, **kwargs)
    return _create_dla('dla34', pretrained, **model_kwargs)


@register_model
def dla46_c(pretrained=False, **kwargs):  # DLA-46-C
    model_kwargs = dict(
        levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256],
        block=DlaBottleneck, **kwargs)
    return _create_dla('dla46_c', pretrained, **model_kwargs)


@register_model
def dla46x_c(pretrained=False, **kwargs):  # DLA-X-46-C
    model_kwargs = dict(
        levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256],
        block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
    return _create_dla('dla46x_c', pretrained, **model_kwargs)


@register_model
def dla60x_c(pretrained=False, **kwargs):  # DLA-X-60-C
    model_kwargs = dict(
        levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 64, 64, 128, 256],
        block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
    return _create_dla('dla60x_c', pretrained, **model_kwargs)


@register_model
def dla60(pretrained=False, **kwargs):  # DLA-60
    model_kwargs = dict(
        levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
        block=DlaBottleneck, **kwargs)
    return _create_dla('dla60', pretrained, **model_kwargs)


@register_model
def dla60x(pretrained=False, **kwargs):  # DLA-X-60
    model_kwargs = dict(
        levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
        block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
    return _create_dla('dla60x', pretrained, **model_kwargs)


@register_model
def dla102(pretrained=False, **kwargs):  # DLA-102
    model_kwargs = dict(
        levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
        block=DlaBottleneck, shortcut_root=True, **kwargs)
    return _create_dla('dla102', pretrained, **model_kwargs)


@register_model
def dla102x(pretrained=False, **kwargs):  # DLA-X-102
    model_kwargs = dict(
        levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
        block=DlaBottleneck, cardinality=32, base_width=4, shortcut_root=True, **kwargs)
    return _create_dla('dla102x', pretrained, **model_kwargs)


@register_model
def dla102x2(pretrained=False, **kwargs):  # DLA-X-102 64
    model_kwargs = dict(
        levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
        block=DlaBottleneck, cardinality=64, base_width=4, shortcut_root=True, **kwargs)
    return _create_dla('dla102x2', pretrained, **model_kwargs)


@register_model
def dla169(pretrained=False, **kwargs):  # DLA-169
    model_kwargs = dict(
        levels=[1, 1, 2, 3, 5, 1], channels=[16, 32, 128, 256, 512, 1024],
        block=DlaBottleneck, shortcut_root=True, **kwargs)
    return _create_dla('dla169', pretrained, **model_kwargs)