File size: 27,420 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681fa96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
""" MobileViT

Paper:
V1: `MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer` - https://arxiv.org/abs/2110.02178
V2: `Separable Self-attention for Mobile Vision Transformers` - https://arxiv.org/abs/2206.02680

MobileVitBlock and checkpoints adapted from https://github.com/apple/ml-cvnets (original copyright below)
License: https://github.com/apple/ml-cvnets/blob/main/LICENSE (Apple open source)

Rest of code, ByobNet, and Transformer block hacked together by / Copyright 2022, Ross Wightman
"""
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2020 Apple Inc. All Rights Reserved.
#
import math
from typing import Union, Callable, Dict, Tuple, Optional, Sequence

import torch
from torch import nn
import torch.nn.functional as F

from .byobnet import register_block, ByoBlockCfg, ByoModelCfg, ByobNet, LayerFn, num_groups
from .fx_features import register_notrace_module
from .layers import to_2tuple, make_divisible, LayerNorm2d, GroupNorm1, ConvMlp, DropPath
from .vision_transformer import Block as TransformerBlock
from .helpers import build_model_with_cfg
from .registry import register_model

__all__ = []


def _cfg(url='', **kwargs):
    return {
        'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
        'crop_pct': 0.9, 'interpolation': 'bicubic',
        'mean': (0., 0., 0.), 'std': (1., 1., 1.),
        'first_conv': 'stem.conv', 'classifier': 'head.fc',
        'fixed_input_size': False,
        **kwargs
    }


default_cfgs = {
    'mobilevit_xxs': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xxs-ad385b40.pth'),
    'mobilevit_xs': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_xs-8fbd6366.pth'),
    'mobilevit_s': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevit_s-38a5a959.pth'),
    'semobilevit_s': _cfg(),

    'mobilevitv2_050': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_050-49951ee2.pth',
        crop_pct=0.888),
    'mobilevitv2_075': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_075-b5556ef6.pth',
        crop_pct=0.888),
    'mobilevitv2_100': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_100-e464ef3b.pth',
        crop_pct=0.888),
    'mobilevitv2_125': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_125-0ae35027.pth',
        crop_pct=0.888),
    'mobilevitv2_150': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150-737c5019.pth',
        crop_pct=0.888),
    'mobilevitv2_175': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175-16462ee2.pth',
        crop_pct=0.888),
    'mobilevitv2_200': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200-b3422f67.pth',
        crop_pct=0.888),

    'mobilevitv2_150_in22ft1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150_in22ft1k-0b555d7b.pth',
        crop_pct=0.888),
    'mobilevitv2_175_in22ft1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175_in22ft1k-4117fa1f.pth',
        crop_pct=0.888),
    'mobilevitv2_200_in22ft1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200_in22ft1k-1d7c8927.pth',
        crop_pct=0.888),

    'mobilevitv2_150_384_in22ft1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_150_384_in22ft1k-9e142854.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    'mobilevitv2_175_384_in22ft1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_175_384_in22ft1k-059cbe56.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    'mobilevitv2_200_384_in22ft1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-mvit-weights/mobilevitv2_200_384_in22ft1k-32c87503.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
}


def _inverted_residual_block(d, c, s, br=4.0):
    # inverted residual is a bottleneck block with bottle_ratio > 1 applied to in_chs, linear output, gs=1 (depthwise)
    return ByoBlockCfg(
        type='bottle', d=d, c=c, s=s, gs=1, br=br,
        block_kwargs=dict(bottle_in=True, linear_out=True))


def _mobilevit_block(d, c, s, transformer_dim, transformer_depth, patch_size=4, br=4.0):
    # inverted residual + mobilevit blocks as per MobileViT network
    return (
        _inverted_residual_block(d=d, c=c, s=s, br=br),
        ByoBlockCfg(
            type='mobilevit', d=1, c=c, s=1,
            block_kwargs=dict(
                transformer_dim=transformer_dim,
                transformer_depth=transformer_depth,
                patch_size=patch_size)
        )
    )


def _mobilevitv2_block(d, c, s, transformer_depth, patch_size=2, br=2.0, transformer_br=0.5):
    # inverted residual + mobilevit blocks as per MobileViT network
    return (
        _inverted_residual_block(d=d, c=c, s=s, br=br),
        ByoBlockCfg(
            type='mobilevit2', d=1, c=c, s=1, br=transformer_br, gs=1,
            block_kwargs=dict(
                transformer_depth=transformer_depth,
                patch_size=patch_size)
        )
    )


def _mobilevitv2_cfg(multiplier=1.0):
    chs = (64, 128, 256, 384, 512)
    if multiplier != 1.0:
        chs = tuple([int(c * multiplier) for c in chs])
    cfg = ByoModelCfg(
        blocks=(
            _inverted_residual_block(d=1, c=chs[0], s=1, br=2.0),
            _inverted_residual_block(d=2, c=chs[1], s=2, br=2.0),
            _mobilevitv2_block(d=1, c=chs[2], s=2, transformer_depth=2),
            _mobilevitv2_block(d=1, c=chs[3], s=2, transformer_depth=4),
            _mobilevitv2_block(d=1, c=chs[4], s=2, transformer_depth=3),
        ),
        stem_chs=int(32 * multiplier),
        stem_type='3x3',
        stem_pool='',
        downsample='',
        act_layer='silu',
    )
    return cfg


model_cfgs = dict(
    mobilevit_xxs=ByoModelCfg(
        blocks=(
            _inverted_residual_block(d=1, c=16, s=1, br=2.0),
            _inverted_residual_block(d=3, c=24, s=2, br=2.0),
            _mobilevit_block(d=1, c=48, s=2, transformer_dim=64, transformer_depth=2, patch_size=2, br=2.0),
            _mobilevit_block(d=1, c=64, s=2, transformer_dim=80, transformer_depth=4, patch_size=2, br=2.0),
            _mobilevit_block(d=1, c=80, s=2, transformer_dim=96, transformer_depth=3, patch_size=2, br=2.0),
        ),
        stem_chs=16,
        stem_type='3x3',
        stem_pool='',
        downsample='',
        act_layer='silu',
        num_features=320,
    ),

    mobilevit_xs=ByoModelCfg(
        blocks=(
            _inverted_residual_block(d=1, c=32, s=1),
            _inverted_residual_block(d=3, c=48, s=2),
            _mobilevit_block(d=1, c=64, s=2, transformer_dim=96, transformer_depth=2, patch_size=2),
            _mobilevit_block(d=1, c=80, s=2, transformer_dim=120, transformer_depth=4, patch_size=2),
            _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=3, patch_size=2),
        ),
        stem_chs=16,
        stem_type='3x3',
        stem_pool='',
        downsample='',
        act_layer='silu',
        num_features=384,
    ),

    mobilevit_s=ByoModelCfg(
        blocks=(
            _inverted_residual_block(d=1, c=32, s=1),
            _inverted_residual_block(d=3, c=64, s=2),
            _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2),
            _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2),
            _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2),
        ),
        stem_chs=16,
        stem_type='3x3',
        stem_pool='',
        downsample='',
        act_layer='silu',
        num_features=640,
    ),

    semobilevit_s=ByoModelCfg(
        blocks=(
            _inverted_residual_block(d=1, c=32, s=1),
            _inverted_residual_block(d=3, c=64, s=2),
            _mobilevit_block(d=1, c=96, s=2, transformer_dim=144, transformer_depth=2, patch_size=2),
            _mobilevit_block(d=1, c=128, s=2, transformer_dim=192, transformer_depth=4, patch_size=2),
            _mobilevit_block(d=1, c=160, s=2, transformer_dim=240, transformer_depth=3, patch_size=2),
        ),
        stem_chs=16,
        stem_type='3x3',
        stem_pool='',
        downsample='',
        attn_layer='se',
        attn_kwargs=dict(rd_ratio=1/8),
        num_features=640,
    ),

    mobilevitv2_050=_mobilevitv2_cfg(.50),
    mobilevitv2_075=_mobilevitv2_cfg(.75),
    mobilevitv2_125=_mobilevitv2_cfg(1.25),
    mobilevitv2_100=_mobilevitv2_cfg(1.0),
    mobilevitv2_150=_mobilevitv2_cfg(1.5),
    mobilevitv2_175=_mobilevitv2_cfg(1.75),
    mobilevitv2_200=_mobilevitv2_cfg(2.0),
)


@register_notrace_module
class MobileVitBlock(nn.Module):
    """ MobileViT block
        Paper: https://arxiv.org/abs/2110.02178?context=cs.LG
    """
    def __init__(
            self,
            in_chs: int,
            out_chs: Optional[int] = None,
            kernel_size: int = 3,
            stride: int = 1,
            bottle_ratio: float = 1.0,
            group_size: Optional[int] = None,
            dilation: Tuple[int, int] = (1, 1),
            mlp_ratio: float = 2.0,
            transformer_dim: Optional[int] = None,
            transformer_depth: int = 2,
            patch_size: int = 8,
            num_heads: int = 4,
            attn_drop: float = 0.,
            drop: int = 0.,
            no_fusion: bool = False,
            drop_path_rate: float = 0.,
            layers: LayerFn = None,
            transformer_norm_layer: Callable = nn.LayerNorm,
            **kwargs,  # eat unused args
    ):
        super(MobileVitBlock, self).__init__()

        layers = layers or LayerFn()
        groups = num_groups(group_size, in_chs)
        out_chs = out_chs or in_chs
        transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs)

        self.conv_kxk = layers.conv_norm_act(
            in_chs, in_chs, kernel_size=kernel_size,
            stride=stride, groups=groups, dilation=dilation[0])
        self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False)

        self.transformer = nn.Sequential(*[
            TransformerBlock(
                transformer_dim, mlp_ratio=mlp_ratio, num_heads=num_heads, qkv_bias=True,
                attn_drop=attn_drop, drop=drop, drop_path=drop_path_rate,
                act_layer=layers.act, norm_layer=transformer_norm_layer)
            for _ in range(transformer_depth)
        ])
        self.norm = transformer_norm_layer(transformer_dim)

        self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1)

        if no_fusion:
            self.conv_fusion = None
        else:
            self.conv_fusion = layers.conv_norm_act(in_chs + out_chs, out_chs, kernel_size=kernel_size, stride=1)

        self.patch_size = to_2tuple(patch_size)
        self.patch_area = self.patch_size[0] * self.patch_size[1]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x

        # Local representation
        x = self.conv_kxk(x)
        x = self.conv_1x1(x)

        # Unfold (feature map -> patches)
        patch_h, patch_w = self.patch_size
        B, C, H, W = x.shape
        new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w
        num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w  # n_h, n_w
        num_patches = num_patch_h * num_patch_w  # N
        interpolate = False
        if new_h != H or new_w != W:
            # Note: Padding can be done, but then it needs to be handled in attention function.
            x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=False)
            interpolate = True

        # [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w]
        x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w, patch_w).transpose(1, 2)
        # [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w
        x = x.reshape(B, C, num_patches, self.patch_area).transpose(1, 3).reshape(B * self.patch_area, num_patches, -1)

        # Global representations
        x = self.transformer(x)
        x = self.norm(x)

        # Fold (patch -> feature map)
        # [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w]
        x = x.contiguous().view(B, self.patch_area, num_patches, -1)
        x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w, patch_h, patch_w)
        # [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W]
        x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w)
        if interpolate:
            x = F.interpolate(x, size=(H, W), mode="bilinear", align_corners=False)

        x = self.conv_proj(x)
        if self.conv_fusion is not None:
            x = self.conv_fusion(torch.cat((shortcut, x), dim=1))
        return x


class LinearSelfAttention(nn.Module):
    """
    This layer applies a self-attention with linear complexity, as described in `https://arxiv.org/abs/2206.02680`
    This layer can be used for self- as well as cross-attention.
    Args:
        embed_dim (int): :math:`C` from an expected input of size :math:`(N, C, H, W)`
        attn_drop (float): Dropout value for context scores. Default: 0.0
        bias (bool): Use bias in learnable layers. Default: True
    Shape:
        - Input: :math:`(N, C, P, N)` where :math:`N` is the batch size, :math:`C` is the input channels,
        :math:`P` is the number of pixels in the patch, and :math:`N` is the number of patches
        - Output: same as the input
    .. note::
        For MobileViTv2, we unfold the feature map [B, C, H, W] into [B, C, P, N] where P is the number of pixels
        in a patch and N is the number of patches. Because channel is the first dimension in this unfolded tensor,
        we use point-wise convolution (instead of a linear layer). This avoids a transpose operation (which may be
        expensive on resource-constrained devices) that may be required to convert the unfolded tensor from
        channel-first to channel-last format in case of a linear layer.
    """

    def __init__(
        self,
        embed_dim: int,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        bias: bool = True,
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim

        self.qkv_proj = nn.Conv2d(
            in_channels=embed_dim,
            out_channels=1 + (2 * embed_dim),
            bias=bias,
            kernel_size=1,
        )
        self.attn_drop = nn.Dropout(attn_drop)
        self.out_proj = nn.Conv2d(
            in_channels=embed_dim,
            out_channels=embed_dim,
            bias=bias,
            kernel_size=1,
        )
        self.out_drop = nn.Dropout(proj_drop)

    def _forward_self_attn(self, x: torch.Tensor) -> torch.Tensor:
        # [B, C, P, N] --> [B, h + 2d, P, N]
        qkv = self.qkv_proj(x)

        # Project x into query, key and value
        # Query --> [B, 1, P, N]
        # value, key --> [B, d, P, N]
        query, key, value = qkv.split([1, self.embed_dim, self.embed_dim], dim=1)

        # apply softmax along N dimension
        context_scores = F.softmax(query, dim=-1)
        context_scores = self.attn_drop(context_scores)

        # Compute context vector
        # [B, d, P, N] x [B, 1, P, N] -> [B, d, P, N] --> [B, d, P, 1]
        context_vector = (key * context_scores).sum(dim=-1, keepdim=True)

        # combine context vector with values
        # [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N]
        out = F.relu(value) * context_vector.expand_as(value)
        out = self.out_proj(out)
        out = self.out_drop(out)
        return out

    @torch.jit.ignore()
    def _forward_cross_attn(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor:
        # x --> [B, C, P, N]
        # x_prev = [B, C, P, M]
        batch_size, in_dim, kv_patch_area, kv_num_patches = x.shape
        q_patch_area, q_num_patches = x.shape[-2:]

        assert (
            kv_patch_area == q_patch_area
        ), "The number of pixels in a patch for query and key_value should be the same"

        # compute query, key, and value
        # [B, C, P, M] --> [B, 1 + d, P, M]
        qk = F.conv2d(
            x_prev,
            weight=self.qkv_proj.weight[:self.embed_dim + 1],
            bias=self.qkv_proj.bias[:self.embed_dim + 1],
        )

        # [B, 1 + d, P, M] --> [B, 1, P, M], [B, d, P, M]
        query, key = qk.split([1, self.embed_dim], dim=1)
        # [B, C, P, N] --> [B, d, P, N]
        value = F.conv2d(
            x,
            weight=self.qkv_proj.weight[self.embed_dim + 1],
            bias=self.qkv_proj.bias[self.embed_dim + 1] if self.qkv_proj.bias is not None else None,
        )

        # apply softmax along M dimension
        context_scores = F.softmax(query, dim=-1)
        context_scores = self.attn_drop(context_scores)

        # compute context vector
        # [B, d, P, M] * [B, 1, P, M] -> [B, d, P, M] --> [B, d, P, 1]
        context_vector = (key * context_scores).sum(dim=-1, keepdim=True)

        # combine context vector with values
        # [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N]
        out = F.relu(value) * context_vector.expand_as(value)
        out = self.out_proj(out)
        out = self.out_drop(out)
        return out

    def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor:
        if x_prev is None:
            return self._forward_self_attn(x)
        else:
            return self._forward_cross_attn(x, x_prev=x_prev)


class LinearTransformerBlock(nn.Module):
    """
    This class defines the pre-norm transformer encoder with linear self-attention in `MobileViTv2 paper <>`_
    Args:
        embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, P, N)`
        mlp_ratio (float): Inner dimension ratio of the FFN relative to embed_dim
        drop (float): Dropout rate. Default: 0.0
        attn_drop (float): Dropout rate for attention in multi-head attention. Default: 0.0
        drop_path (float): Stochastic depth rate Default: 0.0
        norm_layer (Callable): Normalization layer. Default: layer_norm_2d
    Shape:
        - Input: :math:`(B, C_{in}, P, N)` where :math:`B` is batch size, :math:`C_{in}` is input embedding dim,
            :math:`P` is number of pixels in a patch, and :math:`N` is number of patches,
        - Output: same shape as the input
    """

    def __init__(
        self,
        embed_dim: int,
        mlp_ratio: float = 2.0,
        drop: float = 0.0,
        attn_drop: float = 0.0,
        drop_path: float = 0.0,
        act_layer=None,
        norm_layer=None,
    ) -> None:
        super().__init__()
        act_layer = act_layer or nn.SiLU
        norm_layer = norm_layer or GroupNorm1

        self.norm1 = norm_layer(embed_dim)
        self.attn = LinearSelfAttention(embed_dim=embed_dim, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path1 = DropPath(drop_path)

        self.norm2 = norm_layer(embed_dim)
        self.mlp = ConvMlp(
            in_features=embed_dim,
            hidden_features=int(embed_dim * mlp_ratio),
            act_layer=act_layer,
            drop=drop)
        self.drop_path2 = DropPath(drop_path)

    def forward(self, x: torch.Tensor, x_prev: Optional[torch.Tensor] = None) -> torch.Tensor:
        if x_prev is None:
            # self-attention
            x = x + self.drop_path1(self.attn(self.norm1(x)))
        else:
            # cross-attention
            res = x
            x = self.norm1(x)  # norm
            x = self.attn(x, x_prev)  # attn
            x = self.drop_path1(x) + res  # residual

        # Feed forward network
        x = x + self.drop_path2(self.mlp(self.norm2(x)))
        return x


@register_notrace_module
class MobileVitV2Block(nn.Module):
    """
    This class defines the `MobileViTv2 block <>`_
    """

    def __init__(
        self,
        in_chs: int,
        out_chs: Optional[int] = None,
        kernel_size: int = 3,
        bottle_ratio: float = 1.0,
        group_size: Optional[int] = 1,
        dilation: Tuple[int, int] = (1, 1),
        mlp_ratio: float = 2.0,
        transformer_dim: Optional[int] = None,
        transformer_depth: int = 2,
        patch_size: int = 8,
        attn_drop: float = 0.,
        drop: int = 0.,
        drop_path_rate: float = 0.,
        layers: LayerFn = None,
        transformer_norm_layer: Callable = GroupNorm1,
        **kwargs,  # eat unused args
    ):
        super(MobileVitV2Block, self).__init__()
        layers = layers or LayerFn()
        groups = num_groups(group_size, in_chs)
        out_chs = out_chs or in_chs
        transformer_dim = transformer_dim or make_divisible(bottle_ratio * in_chs)

        self.conv_kxk = layers.conv_norm_act(
            in_chs, in_chs, kernel_size=kernel_size,
            stride=1, groups=groups, dilation=dilation[0])
        self.conv_1x1 = nn.Conv2d(in_chs, transformer_dim, kernel_size=1, bias=False)

        self.transformer = nn.Sequential(*[
            LinearTransformerBlock(
                transformer_dim,
                mlp_ratio=mlp_ratio,
                attn_drop=attn_drop,
                drop=drop,
                drop_path=drop_path_rate,
                act_layer=layers.act,
                norm_layer=transformer_norm_layer
            )
            for _ in range(transformer_depth)
        ])
        self.norm = transformer_norm_layer(transformer_dim)

        self.conv_proj = layers.conv_norm_act(transformer_dim, out_chs, kernel_size=1, stride=1, apply_act=False)

        self.patch_size = to_2tuple(patch_size)
        self.patch_area = self.patch_size[0] * self.patch_size[1]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, C, H, W = x.shape
        patch_h, patch_w = self.patch_size
        new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(W / patch_w) * patch_w
        num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w  # n_h, n_w
        num_patches = num_patch_h * num_patch_w  # N
        if new_h != H or new_w != W:
            x = F.interpolate(x, size=(new_h, new_w), mode="bilinear", align_corners=True)

        # Local representation
        x = self.conv_kxk(x)
        x = self.conv_1x1(x)

        # Unfold (feature map -> patches), [B, C, H, W] -> [B, C, P, N]
        C = x.shape[1]
        x = x.reshape(B, C, num_patch_h, patch_h, num_patch_w, patch_w).permute(0, 1, 3, 5, 2, 4)
        x = x.reshape(B, C, -1, num_patches)

        # Global representations
        x = self.transformer(x)
        x = self.norm(x)

        # Fold (patches -> feature map), [B, C, P, N] --> [B, C, H, W]
        x = x.reshape(B, C, patch_h, patch_w, num_patch_h, num_patch_w).permute(0, 1, 4, 2, 5, 3)
        x = x.reshape(B, C, num_patch_h * patch_h, num_patch_w * patch_w)

        x = self.conv_proj(x)
        return x


register_block('mobilevit', MobileVitBlock)
register_block('mobilevit2', MobileVitV2Block)


def _create_mobilevit(variant, cfg_variant=None, pretrained=False, **kwargs):
    return build_model_with_cfg(
        ByobNet, variant, pretrained,
        model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
        feature_cfg=dict(flatten_sequential=True),
        **kwargs)


def _create_mobilevit2(variant, cfg_variant=None, pretrained=False, **kwargs):
    return build_model_with_cfg(
        ByobNet, variant, pretrained,
        model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
        feature_cfg=dict(flatten_sequential=True),
        **kwargs)


@register_model
def mobilevit_xxs(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevit_xxs', pretrained=pretrained, **kwargs)


@register_model
def mobilevit_xs(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevit_xs', pretrained=pretrained, **kwargs)


@register_model
def mobilevit_s(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevit_s', pretrained=pretrained, **kwargs)


@register_model
def semobilevit_s(pretrained=False, **kwargs):
    return _create_mobilevit('semobilevit_s', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_050(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevitv2_050', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_075(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevitv2_075', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_100(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevitv2_100', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_125(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevitv2_125', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_150(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevitv2_150', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_175(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevitv2_175', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_200(pretrained=False, **kwargs):
    return _create_mobilevit('mobilevitv2_200', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_150_in22ft1k(pretrained=False, **kwargs):
    return _create_mobilevit(
        'mobilevitv2_150_in22ft1k', cfg_variant='mobilevitv2_150', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_175_in22ft1k(pretrained=False, **kwargs):
    return _create_mobilevit(
        'mobilevitv2_175_in22ft1k', cfg_variant='mobilevitv2_175', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_200_in22ft1k(pretrained=False, **kwargs):
    return _create_mobilevit(
        'mobilevitv2_200_in22ft1k', cfg_variant='mobilevitv2_200', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_150_384_in22ft1k(pretrained=False, **kwargs):
    return _create_mobilevit(
        'mobilevitv2_150_384_in22ft1k', cfg_variant='mobilevitv2_150', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_175_384_in22ft1k(pretrained=False, **kwargs):
    return _create_mobilevit(
        'mobilevitv2_175_384_in22ft1k', cfg_variant='mobilevitv2_175', pretrained=pretrained, **kwargs)


@register_model
def mobilevitv2_200_384_in22ft1k(pretrained=False, **kwargs):
    return _create_mobilevit(
        'mobilevitv2_200_384_in22ft1k', cfg_variant='mobilevitv2_200', pretrained=pretrained, **kwargs)