File size: 26,528 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
""" NasNet-A (Large)
 nasnetalarge implementation grabbed from Cadene's pretrained models
 https://github.com/Cadene/pretrained-models.pytorch
"""
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from .helpers import build_model_with_cfg
from .layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier
from .registry import register_model

__all__ = ['NASNetALarge']

default_cfgs = {
    'nasnetalarge': {
        'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nasnetalarge-dc4a7b8b.pth',
        'input_size': (3, 331, 331),
        'pool_size': (11, 11),
        'crop_pct': 0.911,
        'interpolation': 'bicubic',
        'mean': (0.5, 0.5, 0.5),
        'std': (0.5, 0.5, 0.5),
        'num_classes': 1000,
        'first_conv': 'conv0.conv',
        'classifier': 'last_linear',
        'label_offset': 1,  # 1001 classes in pretrained weights
    },
}


class ActConvBn(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''):
        super(ActConvBn, self).__init__()
        self.act = nn.ReLU()
        self.conv = create_conv2d(
            in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1)

    def forward(self, x):
        x = self.act(x)
        x = self.conv(x)
        x = self.bn(x)
        return x


class SeparableConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''):
        super(SeparableConv2d, self).__init__()
        self.depthwise_conv2d = create_conv2d(
            in_channels, in_channels, kernel_size=kernel_size,
            stride=stride, padding=padding, groups=in_channels)
        self.pointwise_conv2d = create_conv2d(
            in_channels, out_channels, kernel_size=1, padding=0)

    def forward(self, x):
        x = self.depthwise_conv2d(x)
        x = self.pointwise_conv2d(x)
        return x


class BranchSeparables(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, pad_type='', stem_cell=False):
        super(BranchSeparables, self).__init__()
        middle_channels = out_channels if stem_cell else in_channels
        self.act_1 = nn.ReLU()
        self.separable_1 = SeparableConv2d(
            in_channels, middle_channels, kernel_size, stride=stride, padding=pad_type)
        self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001, momentum=0.1)
        self.act_2 = nn.ReLU(inplace=True)
        self.separable_2 = SeparableConv2d(
            middle_channels, out_channels, kernel_size, stride=1, padding=pad_type)
        self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.1)

    def forward(self, x):
        x = self.act_1(x)
        x = self.separable_1(x)
        x = self.bn_sep_1(x)
        x = self.act_2(x)
        x = self.separable_2(x)
        x = self.bn_sep_2(x)
        return x


class CellStem0(nn.Module):
    def __init__(self, stem_size, num_channels=42, pad_type=''):
        super(CellStem0, self).__init__()
        self.num_channels = num_channels
        self.stem_size = stem_size
        self.conv_1x1 = ActConvBn(self.stem_size, self.num_channels, 1, stride=1)

        self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type)
        self.comb_iter_0_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True)

        self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
        self.comb_iter_1_right = BranchSeparables(self.stem_size, self.num_channels, 7, 2, pad_type, stem_cell=True)

        self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
        self.comb_iter_2_right = BranchSeparables(self.stem_size, self.num_channels, 5, 2, pad_type, stem_cell=True)

        self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type)
        self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)

    def forward(self, x):
        x1 = self.conv_1x1(x)

        x_comb_iter_0_left = self.comb_iter_0_left(x1)
        x_comb_iter_0_right = self.comb_iter_0_right(x)
        x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right

        x_comb_iter_1_left = self.comb_iter_1_left(x1)
        x_comb_iter_1_right = self.comb_iter_1_right(x)
        x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right

        x_comb_iter_2_left = self.comb_iter_2_left(x1)
        x_comb_iter_2_right = self.comb_iter_2_right(x)
        x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right

        x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
        x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1

        x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
        x_comb_iter_4_right = self.comb_iter_4_right(x1)
        x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right

        x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
        return x_out


class CellStem1(nn.Module):

    def __init__(self, stem_size, num_channels, pad_type=''):
        super(CellStem1, self).__init__()
        self.num_channels = num_channels
        self.stem_size = stem_size
        self.conv_1x1 = ActConvBn(2 * self.num_channels, self.num_channels, 1, stride=1)

        self.act = nn.ReLU()
        self.path_1 = nn.Sequential()
        self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
        self.path_1.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False))
       
        self.path_2 = nn.Sequential()
        self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1)))
        self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
        self.path_2.add_module('conv', nn.Conv2d(self.stem_size, self.num_channels // 2, 1, stride=1, bias=False))

        self.final_path_bn = nn.BatchNorm2d(self.num_channels, eps=0.001, momentum=0.1)

        self.comb_iter_0_left = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type)
        self.comb_iter_0_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type)

        self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
        self.comb_iter_1_right = BranchSeparables(self.num_channels, self.num_channels, 7, 2, pad_type)

        self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
        self.comb_iter_2_right = BranchSeparables(self.num_channels, self.num_channels, 5, 2, pad_type)

        self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(self.num_channels, self.num_channels, 3, 1, pad_type)
        self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)

    def forward(self, x_conv0, x_stem_0):
        x_left = self.conv_1x1(x_stem_0)

        x_relu = self.act(x_conv0)
        # path 1
        x_path1 = self.path_1(x_relu)
        # path 2
        x_path2 = self.path_2(x_relu)
        # final path
        x_right = self.final_path_bn(torch.cat([x_path1, x_path2], 1))

        x_comb_iter_0_left = self.comb_iter_0_left(x_left)
        x_comb_iter_0_right = self.comb_iter_0_right(x_right)
        x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right

        x_comb_iter_1_left = self.comb_iter_1_left(x_left)
        x_comb_iter_1_right = self.comb_iter_1_right(x_right)
        x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right

        x_comb_iter_2_left = self.comb_iter_2_left(x_left)
        x_comb_iter_2_right = self.comb_iter_2_right(x_right)
        x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right

        x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
        x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1

        x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
        x_comb_iter_4_right = self.comb_iter_4_right(x_left)
        x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right

        x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
        return x_out


class FirstCell(nn.Module):

    def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
        super(FirstCell, self).__init__()
        self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1)

        self.act = nn.ReLU()
        self.path_1 = nn.Sequential()
        self.path_1.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
        self.path_1.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False))

        self.path_2 = nn.Sequential()
        self.path_2.add_module('pad', nn.ZeroPad2d((-1, 1, -1, 1)))
        self.path_2.add_module('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False))
        self.path_2.add_module('conv', nn.Conv2d(in_chs_left, out_chs_left, 1, stride=1, bias=False))

        self.final_path_bn = nn.BatchNorm2d(out_chs_left * 2, eps=0.001, momentum=0.1)

        self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type)
        self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)

        self.comb_iter_1_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type)
        self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)

        self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
        self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)

    def forward(self, x, x_prev):
        x_relu = self.act(x_prev)
        x_path1 = self.path_1(x_relu)
        x_path2 = self.path_2(x_relu)
        x_left = self.final_path_bn(torch.cat([x_path1, x_path2], 1))
        x_right = self.conv_1x1(x)

        x_comb_iter_0_left = self.comb_iter_0_left(x_right)
        x_comb_iter_0_right = self.comb_iter_0_right(x_left)
        x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right

        x_comb_iter_1_left = self.comb_iter_1_left(x_left)
        x_comb_iter_1_right = self.comb_iter_1_right(x_left)
        x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right

        x_comb_iter_2_left = self.comb_iter_2_left(x_right)
        x_comb_iter_2 = x_comb_iter_2_left + x_left

        x_comb_iter_3_left = self.comb_iter_3_left(x_left)
        x_comb_iter_3_right = self.comb_iter_3_right(x_left)
        x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right

        x_comb_iter_4_left = self.comb_iter_4_left(x_right)
        x_comb_iter_4 = x_comb_iter_4_left + x_right

        x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
        return x_out


class NormalCell(nn.Module):

    def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
        super(NormalCell, self).__init__()
        self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type)
        self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type)

        self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 1, pad_type)
        self.comb_iter_0_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type)

        self.comb_iter_1_left = BranchSeparables(out_chs_left, out_chs_left, 5, 1, pad_type)
        self.comb_iter_1_right = BranchSeparables(out_chs_left, out_chs_left, 3, 1, pad_type)

        self.comb_iter_2_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_3_left = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)
        self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)

    def forward(self, x, x_prev):
        x_left = self.conv_prev_1x1(x_prev)
        x_right = self.conv_1x1(x)

        x_comb_iter_0_left = self.comb_iter_0_left(x_right)
        x_comb_iter_0_right = self.comb_iter_0_right(x_left)
        x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right

        x_comb_iter_1_left = self.comb_iter_1_left(x_left)
        x_comb_iter_1_right = self.comb_iter_1_right(x_left)
        x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right

        x_comb_iter_2_left = self.comb_iter_2_left(x_right)
        x_comb_iter_2 = x_comb_iter_2_left + x_left

        x_comb_iter_3_left = self.comb_iter_3_left(x_left)
        x_comb_iter_3_right = self.comb_iter_3_right(x_left)
        x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right

        x_comb_iter_4_left = self.comb_iter_4_left(x_right)
        x_comb_iter_4 = x_comb_iter_4_left + x_right

        x_out = torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
        return x_out


class ReductionCell0(nn.Module):

    def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
        super(ReductionCell0, self).__init__()
        self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type)
        self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type)

        self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)
        self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)

        self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
        self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)

        self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
        self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)

        self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
        self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)

    def forward(self, x, x_prev):
        x_left = self.conv_prev_1x1(x_prev)
        x_right = self.conv_1x1(x)

        x_comb_iter_0_left = self.comb_iter_0_left(x_right)
        x_comb_iter_0_right = self.comb_iter_0_right(x_left)
        x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right

        x_comb_iter_1_left = self.comb_iter_1_left(x_right)
        x_comb_iter_1_right = self.comb_iter_1_right(x_left)
        x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right

        x_comb_iter_2_left = self.comb_iter_2_left(x_right)
        x_comb_iter_2_right = self.comb_iter_2_right(x_left)
        x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right

        x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
        x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1

        x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
        x_comb_iter_4_right = self.comb_iter_4_right(x_right)
        x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right

        x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
        return x_out


class ReductionCell1(nn.Module):

    def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
        super(ReductionCell1, self).__init__()
        self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, 1, stride=1, padding=pad_type)
        self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, 1, stride=1, padding=pad_type)

        self.comb_iter_0_left = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)
        self.comb_iter_0_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)

        self.comb_iter_1_left = create_pool2d('max', 3, 2, padding=pad_type)
        self.comb_iter_1_right = BranchSeparables(out_chs_right, out_chs_right, 7, 2, pad_type)

        self.comb_iter_2_left = create_pool2d('avg', 3, 2, count_include_pad=False, padding=pad_type)
        self.comb_iter_2_right = BranchSeparables(out_chs_right, out_chs_right, 5, 2, pad_type)

        self.comb_iter_3_right = create_pool2d('avg', 3, 1, count_include_pad=False, padding=pad_type)

        self.comb_iter_4_left = BranchSeparables(out_chs_right, out_chs_right, 3, 1, pad_type)
        self.comb_iter_4_right = create_pool2d('max', 3, 2, padding=pad_type)

    def forward(self, x, x_prev):
        x_left = self.conv_prev_1x1(x_prev)
        x_right = self.conv_1x1(x)

        x_comb_iter_0_left = self.comb_iter_0_left(x_right)
        x_comb_iter_0_right = self.comb_iter_0_right(x_left)
        x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right

        x_comb_iter_1_left = self.comb_iter_1_left(x_right)
        x_comb_iter_1_right = self.comb_iter_1_right(x_left)
        x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right

        x_comb_iter_2_left = self.comb_iter_2_left(x_right)
        x_comb_iter_2_right = self.comb_iter_2_right(x_left)
        x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right

        x_comb_iter_3_right = self.comb_iter_3_right(x_comb_iter_0)
        x_comb_iter_3 = x_comb_iter_3_right + x_comb_iter_1

        x_comb_iter_4_left = self.comb_iter_4_left(x_comb_iter_0)
        x_comb_iter_4_right = self.comb_iter_4_right(x_right)
        x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right

        x_out = torch.cat([x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
        return x_out


class NASNetALarge(nn.Module):
    """NASNetALarge (6 @ 4032) """

    def __init__(
            self, num_classes=1000, in_chans=3, stem_size=96, channel_multiplier=2,
            num_features=4032, output_stride=32, drop_rate=0., global_pool='avg', pad_type='same'):
        super(NASNetALarge, self).__init__()
        self.num_classes = num_classes
        self.stem_size = stem_size
        self.num_features = num_features
        self.channel_multiplier = channel_multiplier
        self.drop_rate = drop_rate
        assert output_stride == 32

        channels = self.num_features // 24
        # 24 is default value for the architecture

        self.conv0 = ConvNormAct(
            in_channels=in_chans, out_channels=self.stem_size, kernel_size=3, padding=0, stride=2,
            norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False)

        self.cell_stem_0 = CellStem0(
            self.stem_size, num_channels=channels // (channel_multiplier ** 2), pad_type=pad_type)
        self.cell_stem_1 = CellStem1(
            self.stem_size, num_channels=channels // channel_multiplier, pad_type=pad_type)

        self.cell_0 = FirstCell(
            in_chs_left=channels, out_chs_left=channels // 2,
            in_chs_right=2 * channels, out_chs_right=channels, pad_type=pad_type)
        self.cell_1 = NormalCell(
            in_chs_left=2 * channels, out_chs_left=channels,
            in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
        self.cell_2 = NormalCell(
            in_chs_left=6 * channels, out_chs_left=channels,
            in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
        self.cell_3 = NormalCell(
            in_chs_left=6 * channels, out_chs_left=channels,
            in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
        self.cell_4 = NormalCell(
            in_chs_left=6 * channels, out_chs_left=channels,
            in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)
        self.cell_5 = NormalCell(
            in_chs_left=6 * channels, out_chs_left=channels,
            in_chs_right=6 * channels, out_chs_right=channels, pad_type=pad_type)

        self.reduction_cell_0 = ReductionCell0(
            in_chs_left=6 * channels, out_chs_left=2 * channels,
            in_chs_right=6 * channels, out_chs_right=2 * channels, pad_type=pad_type)
        self.cell_6 = FirstCell(
            in_chs_left=6 * channels, out_chs_left=channels,
            in_chs_right=8 * channels, out_chs_right=2 * channels, pad_type=pad_type)
        self.cell_7 = NormalCell(
            in_chs_left=8 * channels, out_chs_left=2 * channels,
            in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
        self.cell_8 = NormalCell(
            in_chs_left=12 * channels, out_chs_left=2 * channels,
            in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
        self.cell_9 = NormalCell(
            in_chs_left=12 * channels, out_chs_left=2 * channels,
            in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
        self.cell_10 = NormalCell(
            in_chs_left=12 * channels, out_chs_left=2 * channels,
            in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)
        self.cell_11 = NormalCell(
            in_chs_left=12 * channels, out_chs_left=2 * channels,
            in_chs_right=12 * channels, out_chs_right=2 * channels, pad_type=pad_type)

        self.reduction_cell_1 = ReductionCell1(
            in_chs_left=12 * channels, out_chs_left=4 * channels,
            in_chs_right=12 * channels, out_chs_right=4 * channels, pad_type=pad_type)
        self.cell_12 = FirstCell(
            in_chs_left=12 * channels, out_chs_left=2 * channels,
            in_chs_right=16 * channels, out_chs_right=4 * channels, pad_type=pad_type)
        self.cell_13 = NormalCell(
            in_chs_left=16 * channels, out_chs_left=4 * channels,
            in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
        self.cell_14 = NormalCell(
            in_chs_left=24 * channels, out_chs_left=4 * channels,
            in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
        self.cell_15 = NormalCell(
            in_chs_left=24 * channels, out_chs_left=4 * channels,
            in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
        self.cell_16 = NormalCell(
            in_chs_left=24 * channels, out_chs_left=4 * channels,
            in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
        self.cell_17 = NormalCell(
            in_chs_left=24 * channels, out_chs_left=4 * channels,
            in_chs_right=24 * channels, out_chs_right=4 * channels, pad_type=pad_type)
        self.act = nn.ReLU(inplace=True)
        self.feature_info = [
            dict(num_chs=96, reduction=2, module='conv0'),
            dict(num_chs=168, reduction=4, module='cell_stem_1.conv_1x1.act'),
            dict(num_chs=1008, reduction=8, module='reduction_cell_0.conv_1x1.act'),
            dict(num_chs=2016, reduction=16, module='reduction_cell_1.conv_1x1.act'),
            dict(num_chs=4032, reduction=32, module='act'),
        ]

        self.global_pool, self.last_linear = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^conv0|cell_stem_[01]',
            blocks=[
                (r'^cell_(\d+)', None),
                (r'^reduction_cell_0', (6,)),
                (r'^reduction_cell_1', (12,)),
            ]
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    @torch.jit.ignore
    def get_classifier(self):
        return self.last_linear

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.global_pool, self.last_linear = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool)

    def forward_features(self, x):
        x_conv0 = self.conv0(x)

        x_stem_0 = self.cell_stem_0(x_conv0)
        x_stem_1 = self.cell_stem_1(x_conv0, x_stem_0)

        x_cell_0 = self.cell_0(x_stem_1, x_stem_0)
        x_cell_1 = self.cell_1(x_cell_0, x_stem_1)
        x_cell_2 = self.cell_2(x_cell_1, x_cell_0)
        x_cell_3 = self.cell_3(x_cell_2, x_cell_1)
        x_cell_4 = self.cell_4(x_cell_3, x_cell_2)
        x_cell_5 = self.cell_5(x_cell_4, x_cell_3)

        x_reduction_cell_0 = self.reduction_cell_0(x_cell_5, x_cell_4)
        x_cell_6 = self.cell_6(x_reduction_cell_0, x_cell_4)
        x_cell_7 = self.cell_7(x_cell_6, x_reduction_cell_0)
        x_cell_8 = self.cell_8(x_cell_7, x_cell_6)
        x_cell_9 = self.cell_9(x_cell_8, x_cell_7)
        x_cell_10 = self.cell_10(x_cell_9, x_cell_8)
        x_cell_11 = self.cell_11(x_cell_10, x_cell_9)

        x_reduction_cell_1 = self.reduction_cell_1(x_cell_11, x_cell_10)
        x_cell_12 = self.cell_12(x_reduction_cell_1, x_cell_10)
        x_cell_13 = self.cell_13(x_cell_12, x_reduction_cell_1)
        x_cell_14 = self.cell_14(x_cell_13, x_cell_12)
        x_cell_15 = self.cell_15(x_cell_14, x_cell_13)
        x_cell_16 = self.cell_16(x_cell_15, x_cell_14)
        x_cell_17 = self.cell_17(x_cell_16, x_cell_15)
        x = self.act(x_cell_17)
        return x

    def forward_head(self, x):
        x = self.global_pool(x)
        if self.drop_rate > 0:
            x = F.dropout(x, self.drop_rate, training=self.training)
        x = self.last_linear(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_nasnet(variant, pretrained=False, **kwargs):
    return build_model_with_cfg(
        NASNetALarge, variant, pretrained,
        feature_cfg=dict(feature_cls='hook', no_rewrite=True),  # not possible to re-write this model
        **kwargs)


@register_model
def nasnetalarge(pretrained=False, **kwargs):
    """NASNet-A large model architecture.
    """
    model_kwargs = dict(pad_type='same', **kwargs)
    return _create_nasnet('nasnetalarge', pretrained, **model_kwargs)