File size: 20,124 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
""" Nested Transformer (NesT) in PyTorch

A PyTorch implement of Aggregating Nested Transformers as described in:

'Aggregating Nested Transformers'
    - https://arxiv.org/abs/2105.12723

The official Jax code is released and available at https://github.com/google-research/nested-transformer. The weights
have been converted with convert/convert_nest_flax.py

Acknowledgments:
* The paper authors for sharing their research, code, and model weights
* Ross Wightman's existing code off which I based this

Copyright 2021 Alexander Soare
"""

import collections.abc
import logging
import math
from functools import partial

import torch
import torch.nn.functional as F
from torch import nn

from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_function
from .helpers import build_model_with_cfg, named_apply, checkpoint_seq
from .layers import PatchEmbed, Mlp, DropPath, create_classifier, trunc_normal_
from .layers import _assert
from .layers import create_conv2d, create_pool2d, to_ntuple
from .registry import register_model

_logger = logging.getLogger(__name__)


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': [14, 14],
        'crop_pct': .875, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # (weights from official Google JAX impl)
    'nest_base': _cfg(),
    'nest_small': _cfg(),
    'nest_tiny': _cfg(),
    'jx_nest_base': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/jx_nest_base-8bc41011.pth'),
    'jx_nest_small': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/jx_nest_small-422eaded.pth'),
    'jx_nest_tiny': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/jx_nest_tiny-e3428fb9.pth'),
}


class Attention(nn.Module):
    """
    This is much like `.vision_transformer.Attention` but uses *localised* self attention by accepting an input with
     an extra "image block" dim
    """
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, 3*dim, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        """
        x is shape: B (batch_size), T (image blocks), N (seq length per image block), C (embed dim)
        """ 
        B, T, N, C = x.shape
        # result of next line is (qkv, B, num (H)eads, T, N, (C')hannels per head)
        qkv = self.qkv(x).reshape(B, T, N, 3, self.num_heads, C // self.num_heads).permute(3, 0, 4, 1, 2, 5)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale # (B, H, T, N, N)
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # (B, H, T, N, C'), permute -> (B, T, N, C', H)
        x = (attn @ v).permute(0, 2, 3, 4, 1).reshape(B, T, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x  # (B, T, N, C)


class TransformerLayer(nn.Module):
    """
    This is much like `.vision_transformer.Block` but:
        - Called TransformerLayer here to allow for "block" as defined in the paper ("non-overlapping image blocks")
        - Uses modified Attention layer that handles the "block" dimension
    """
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        y = self.norm1(x)
        x = x + self.drop_path(self.attn(y))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class ConvPool(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer, pad_type=''):
        super().__init__()
        self.conv = create_conv2d(in_channels, out_channels, kernel_size=3, padding=pad_type, bias=True)
        self.norm = norm_layer(out_channels)
        self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=pad_type)

    def forward(self, x):
        """
        x is expected to have shape (B, C, H, W)
        """
        _assert(x.shape[-2] % 2 == 0, 'BlockAggregation requires even input spatial dims')
        _assert(x.shape[-1] % 2 == 0, 'BlockAggregation requires even input spatial dims')
        x = self.conv(x)
        # Layer norm done over channel dim only
        x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        x = self.pool(x)
        return x  # (B, C, H//2, W//2)


def blockify(x, block_size: int):
    """image to blocks
    Args:
        x (Tensor): with shape (B, H, W, C)
        block_size (int): edge length of a single square block in units of H, W
    """
    B, H, W, C  = x.shape
    _assert(H % block_size == 0, '`block_size` must divide input height evenly')
    _assert(W % block_size == 0, '`block_size` must divide input width evenly')
    grid_height = H // block_size
    grid_width = W // block_size
    x = x.reshape(B, grid_height, block_size, grid_width, block_size, C)
    x = x.transpose(2, 3).reshape(B, grid_height * grid_width, -1, C)
    return x  # (B, T, N, C)


@register_notrace_function  # reason: int receives Proxy
def deblockify(x, block_size: int):
    """blocks to image
    Args:
        x (Tensor): with shape (B, T, N, C) where T is number of blocks and N is sequence size per block
        block_size (int): edge length of a single square block in units of desired H, W
    """
    B, T, _, C = x.shape
    grid_size = int(math.sqrt(T))
    height = width = grid_size * block_size
    x = x.reshape(B, grid_size, grid_size, block_size, block_size, C)
    x = x.transpose(2, 3).reshape(B, height, width, C)
    return x  # (B, H, W, C)


class NestLevel(nn.Module):
    """ Single hierarchical level of a Nested Transformer
    """
    def __init__(
            self, num_blocks, block_size, seq_length, num_heads, depth, embed_dim, prev_embed_dim=None,
            mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rates=[],
            norm_layer=None, act_layer=None, pad_type=''):
        super().__init__()
        self.block_size = block_size
        self.grad_checkpointing = False

        self.pos_embed = nn.Parameter(torch.zeros(1, num_blocks, seq_length, embed_dim))

        if prev_embed_dim is not None:
            self.pool = ConvPool(prev_embed_dim, embed_dim, norm_layer=norm_layer, pad_type=pad_type)
        else:
            self.pool = nn.Identity()

        # Transformer encoder
        if len(drop_path_rates):
            assert len(drop_path_rates) == depth, 'Must provide as many drop path rates as there are transformer layers'
        self.transformer_encoder = nn.Sequential(*[
            TransformerLayer(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rates[i],
                norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)])

    def forward(self, x):
        """
        expects x as (B, C, H, W)
        """
        x = self.pool(x)
        x = x.permute(0, 2, 3, 1)  # (B, H', W', C), switch to channels last for transformer
        x = blockify(x, self.block_size)  # (B, T, N, C')
        x = x + self.pos_embed
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.transformer_encoder, x)
        else:
            x = self.transformer_encoder(x)  # (B, T, N, C')
        x = deblockify(x, self.block_size)  # (B, H', W', C')
        # Channel-first for block aggregation, and generally to replicate convnet feature map at each stage
        return x.permute(0, 3, 1, 2)  # (B, C, H', W')


class Nest(nn.Module):
    """ Nested Transformer (NesT)

    A PyTorch impl of : `Aggregating Nested Transformers`
        - https://arxiv.org/abs/2105.12723
    """

    def __init__(
            self, img_size=224, in_chans=3, patch_size=4, num_levels=3, embed_dims=(128, 256, 512),
            num_heads=(4, 8, 16), depths=(2, 2, 20), num_classes=1000, mlp_ratio=4., qkv_bias=True,
            drop_rate=0., attn_drop_rate=0., drop_path_rate=0.5, norm_layer=None, act_layer=None,
            pad_type='', weight_init='', global_pool='avg'
    ):
        """
        Args:
            img_size (int, tuple): input image size
            in_chans (int): number of input channels
            patch_size (int): patch size
            num_levels (int): number of block hierarchies (T_d in the paper)
            embed_dims (int, tuple): embedding dimensions of each level
            num_heads (int, tuple): number of attention heads for each level
            depths (int, tuple): number of transformer layers for each level
            num_classes (int): number of classes for classification head
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim for MLP of transformer layers
            qkv_bias (bool): enable bias for qkv if True
            drop_rate (float): dropout rate for MLP of transformer layers, MSA final projection layer, and classifier
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer: (nn.Module): normalization layer for transformer layers
            act_layer: (nn.Module): activation layer in MLP of transformer layers
            pad_type: str: Type of padding to use '' for PyTorch symmetric, 'same' for TF SAME
            weight_init: (str): weight init scheme
            global_pool: (str): type of pooling operation to apply to final feature map

        Notes:
            - Default values follow NesT-B from the original Jax code.
            - `embed_dims`, `num_heads`, `depths` should be ints or tuples with length `num_levels`.
            - For those following the paper, Table A1 may have errors!
                - https://github.com/google-research/nested-transformer/issues/2
        """
        super().__init__()

        for param_name in ['embed_dims', 'num_heads', 'depths']:
            param_value = locals()[param_name]
            if isinstance(param_value, collections.abc.Sequence):
                assert len(param_value) == num_levels, f'Require `len({param_name}) == num_levels`'

        embed_dims = to_ntuple(num_levels)(embed_dims)
        num_heads = to_ntuple(num_levels)(num_heads)
        depths = to_ntuple(num_levels)(depths)
        self.num_classes = num_classes
        self.num_features = embed_dims[-1]
        self.feature_info = []
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU
        self.drop_rate = drop_rate
        self.num_levels = num_levels
        if isinstance(img_size, collections.abc.Sequence):
            assert img_size[0] == img_size[1], 'Model only handles square inputs'
            img_size = img_size[0]
        assert img_size % patch_size == 0, '`patch_size` must divide `img_size` evenly'
        self.patch_size = patch_size

        # Number of blocks at each level
        self.num_blocks = (4 ** torch.arange(num_levels)).flip(0).tolist()
        assert (img_size // patch_size) % math.sqrt(self.num_blocks[0]) == 0, \
            'First level blocks don\'t fit evenly. Check `img_size`, `patch_size`, and `num_levels`'

        # Block edge size in units of patches
        # Hint: (img_size // patch_size) gives number of patches along edge of image. sqrt(self.num_blocks[0]) is the
        #  number of blocks along edge of image
        self.block_size = int((img_size // patch_size) // math.sqrt(self.num_blocks[0]))
        
        # Patch embedding
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0], flatten=False)
        self.num_patches = self.patch_embed.num_patches
        self.seq_length = self.num_patches // self.num_blocks[0]

        # Build up each hierarchical level
        levels = []
        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        prev_dim = None
        curr_stride = 4
        for i in range(len(self.num_blocks)):
            dim = embed_dims[i]
            levels.append(NestLevel(
                self.num_blocks[i], self.block_size, self.seq_length, num_heads[i], depths[i], dim, prev_dim,
                mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, dp_rates[i], norm_layer, act_layer, pad_type=pad_type))
            self.feature_info += [dict(num_chs=dim, reduction=curr_stride, module=f'levels.{i}')]
            prev_dim = dim
            curr_stride *= 2
        self.levels = nn.Sequential(*levels)

        # Final normalization layer
        self.norm = norm_layer(embed_dims[-1])

        # Classifier
        self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)

        self.init_weights(weight_init)

    @torch.jit.ignore
    def init_weights(self, mode=''):
        assert mode in ('nlhb', '')
        head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
        for level in self.levels:
            trunc_normal_(level.pos_embed, std=.02, a=-2, b=2)
        named_apply(partial(_init_nest_weights, head_bias=head_bias), self)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {f'level.{i}.pos_embed' for i in range(len(self.levels))}

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^patch_embed',  # stem and embed
            blocks=[
                (r'^levels\.(\d+)' if coarse else r'^levels\.(\d+)\.transformer_encoder\.(\d+)', None),
                (r'^levels\.(\d+)\.(?:pool|pos_embed)', (0,)),
                (r'^norm', (99999,))
            ]
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for l in self.levels:
            l.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.global_pool, self.head = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool)

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = self.levels(x)
        # Layer norm done over channel dim only (to NHWC and back)
        x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        x = self.global_pool(x)
        if self.drop_rate > 0.:
            x = F.dropout(x, p=self.drop_rate, training=self.training)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _init_nest_weights(module: nn.Module, name: str = '', head_bias: float = 0.):
    """ NesT weight initialization
    Can replicate Jax implementation. Otherwise follows vision_transformer.py
    """
    if isinstance(module, nn.Linear):
        if name.startswith('head'):
            trunc_normal_(module.weight, std=.02, a=-2, b=2)
            nn.init.constant_(module.bias, head_bias)
        else:
            trunc_normal_(module.weight, std=.02, a=-2, b=2)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Conv2d):
        trunc_normal_(module.weight, std=.02, a=-2, b=2)
        if module.bias is not None:
            nn.init.zeros_(module.bias)


def resize_pos_embed(posemb, posemb_new):
    """
    Rescale the grid of position embeddings when loading from state_dict
    Expected shape of position embeddings is (1, T, N, C), and considers only square images
    """
    _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
    seq_length_old = posemb.shape[2]
    num_blocks_new, seq_length_new = posemb_new.shape[1:3]
    size_new = int(math.sqrt(num_blocks_new*seq_length_new))
    # First change to (1, C, H, W)
    posemb = deblockify(posemb, int(math.sqrt(seq_length_old))).permute(0, 3, 1, 2)
    posemb = F.interpolate(posemb, size=[size_new, size_new], mode='bicubic', align_corners=False)
    # Now change to new (1, T, N, C)
    posemb = blockify(posemb.permute(0, 2, 3, 1), int(math.sqrt(seq_length_new)))
    return posemb


def checkpoint_filter_fn(state_dict, model):
    """ resize positional embeddings of pretrained weights """
    pos_embed_keys = [k for k in state_dict.keys() if k.startswith('pos_embed_')]
    for k in pos_embed_keys:
        if state_dict[k].shape != getattr(model, k).shape:
            state_dict[k] = resize_pos_embed(state_dict[k], getattr(model, k))
    return state_dict


def _create_nest(variant, pretrained=False, **kwargs):
    model = build_model_with_cfg(
        Nest, variant, pretrained,
        feature_cfg=dict(out_indices=(0, 1, 2), flatten_sequential=True),
        pretrained_filter_fn=checkpoint_filter_fn,
        **kwargs)

    return model


@register_model
def nest_base(pretrained=False, **kwargs):
    """ Nest-B @ 224x224
    """
    model_kwargs = dict(
        embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs)
    model = _create_nest('nest_base', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def nest_small(pretrained=False, **kwargs):
    """ Nest-S @ 224x224
    """
    model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs)
    model = _create_nest('nest_small', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def nest_tiny(pretrained=False, **kwargs):
    """ Nest-T @ 224x224
    """
    model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs)
    model = _create_nest('nest_tiny', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def jx_nest_base(pretrained=False, **kwargs):
    """ Nest-B @ 224x224, Pretrained weights converted from official Jax impl.
    """
    kwargs['pad_type'] = 'same'
    model_kwargs = dict(embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs)
    model = _create_nest('jx_nest_base', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def jx_nest_small(pretrained=False, **kwargs):
    """ Nest-S @ 224x224, Pretrained weights converted from official Jax impl.
    """
    kwargs['pad_type'] = 'same'
    model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs)
    model = _create_nest('jx_nest_small', pretrained=pretrained, **model_kwargs)
    return model


@register_model
def jx_nest_tiny(pretrained=False, **kwargs):
    """ Nest-T @ 224x224, Pretrained weights converted from official Jax impl.
    """
    kwargs['pad_type'] = 'same'
    model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs)
    model = _create_nest('jx_nest_tiny', pretrained=pretrained, **model_kwargs)
    return model