File size: 2,463 Bytes
07f408f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
""" Lookahead Optimizer Wrapper.
Implementation modified from: https://github.com/alphadl/lookahead.pytorch
Paper: `Lookahead Optimizer: k steps forward, 1 step back` - https://arxiv.org/abs/1907.08610

Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
from torch.optim.optimizer import Optimizer
from collections import defaultdict


class Lookahead(Optimizer):
    def __init__(self, base_optimizer, alpha=0.5, k=6):
        # NOTE super().__init__() not called on purpose
        if not 0.0 <= alpha <= 1.0:
            raise ValueError(f'Invalid slow update rate: {alpha}')
        if not 1 <= k:
            raise ValueError(f'Invalid lookahead steps: {k}')
        defaults = dict(lookahead_alpha=alpha, lookahead_k=k, lookahead_step=0)
        self._base_optimizer = base_optimizer
        self.param_groups = base_optimizer.param_groups
        self.defaults = base_optimizer.defaults
        self.defaults.update(defaults)
        self.state = defaultdict(dict)
        # manually add our defaults to the param groups
        for name, default in defaults.items():
            for group in self._base_optimizer.param_groups:
                group.setdefault(name, default)

    @torch.no_grad()
    def update_slow(self, group):
        for fast_p in group["params"]:
            if fast_p.grad is None:
                continue
            param_state = self._base_optimizer.state[fast_p]
            if 'lookahead_slow_buff' not in param_state:
                param_state['lookahead_slow_buff'] = torch.empty_like(fast_p)
                param_state['lookahead_slow_buff'].copy_(fast_p)
            slow = param_state['lookahead_slow_buff']
            slow.add_(fast_p - slow, alpha=group['lookahead_alpha'])
            fast_p.copy_(slow)

    def sync_lookahead(self):
        for group in self._base_optimizer.param_groups:
            self.update_slow(group)

    @torch.no_grad()
    def step(self, closure=None):
        loss = self._base_optimizer.step(closure)
        for group in self._base_optimizer.param_groups:
            group['lookahead_step'] += 1
            if group['lookahead_step'] % group['lookahead_k'] == 0:
                self.update_slow(group)
        return loss

    def state_dict(self):
        return self._base_optimizer.state_dict()

    def load_state_dict(self, state_dict):
        self._base_optimizer.load_state_dict(state_dict)
        self.param_groups = self._base_optimizer.param_groups