File size: 1,932 Bytes
c37b2dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# coding: utf-8

"""

functions for processing and transforming 3D facial keypoints

"""

import numpy as np
import torch
import torch.nn.functional as F

PI = np.pi


def headpose_pred_to_degree(pred):
    """

    pred: (bs, 66) or (bs, 1) or others

    """
    if pred.ndim > 1 and pred.shape[1] == 66:
        # NOTE: note that the average is modified to 97.5
        device = pred.device
        idx_tensor = [idx for idx in range(0, 66)]
        idx_tensor = torch.FloatTensor(idx_tensor).to(device)
        pred = F.softmax(pred, dim=1)
        degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5

        return degree

    return pred


def get_rotation_matrix(pitch_, yaw_, roll_):
    """ the input is in degree

    """
    # calculate the rotation matrix: vps @ rot

    # transform to radian
    pitch = pitch_ / 180 * PI
    yaw = yaw_ / 180 * PI
    roll = roll_ / 180 * PI

    device = pitch.device

    if pitch.ndim == 1:
        pitch = pitch.unsqueeze(1)
    if yaw.ndim == 1:
        yaw = yaw.unsqueeze(1)
    if roll.ndim == 1:
        roll = roll.unsqueeze(1)

    # calculate the euler matrix
    bs = pitch.shape[0]
    ones = torch.ones([bs, 1]).to(device)
    zeros = torch.zeros([bs, 1]).to(device)
    x, y, z = pitch, yaw, roll

    rot_x = torch.cat([
        ones, zeros, zeros,
        zeros, torch.cos(x), -torch.sin(x),
        zeros, torch.sin(x), torch.cos(x)
    ], dim=1).reshape([bs, 3, 3])

    rot_y = torch.cat([
        torch.cos(y), zeros, torch.sin(y),
        zeros, ones, zeros,
        -torch.sin(y), zeros, torch.cos(y)
    ], dim=1).reshape([bs, 3, 3])

    rot_z = torch.cat([
        torch.cos(z), -torch.sin(z), zeros,
        torch.sin(z), torch.cos(z), zeros,
        zeros, zeros, ones
    ], dim=1).reshape([bs, 3, 3])

    rot = rot_z @ rot_y @ rot_x
    return rot.permute(0, 2, 1)  # transpose