File size: 12,814 Bytes
21d588d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from .style_template import styles

import os
import cv2
import torch
import numpy as np
from PIL import Image
import folder_paths

from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from .pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps


current_directory = os.path.dirname(os.path.abspath(__file__))
device = "cuda" if torch.cuda.is_available() else "cpu"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Neon"


def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
        return p.replace("{prompt}", positive), n + ' ' + negative


def resize_img(input_image, max_side=1280, min_side=1024, size=None, 

               pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):

    image_np = (255. * input_image.cpu().numpy().squeeze()).clip(0, 255).astype(np.uint8)
    input_image = Image.fromarray(image_np)

    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        ratio = min_side / min(h, w)
        w, h = round(ratio*w), round(ratio*h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
        input_image = Image.fromarray(res)
    return input_image


class InsightFaceLoader_Node_Zho:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "provider": (["CUDA", "CPU"], ),
            },
        }

    RETURN_TYPES = ("INSIGHTFACEMODEL",)
    FUNCTION = "load_insight_face_antelopev2"
    CATEGORY = "📷InstantID"

    def load_insight_face_antelopev2(self, provider):
            
        model = FaceAnalysis(name="antelopev2", root=current_directory, providers=[provider + 'ExecutionProvider',])
        model.prepare(ctx_id=0, det_size=(640, 640))

        return (model,)


class IDControlNetLoaderNode_Zho:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "controlnet_path": ("STRING", {"default": "enter your path"}),
            }
        }

    RETURN_TYPES = ("MODEL",)
    RETURN_NAMES = ("controlnet",)
    FUNCTION = "load_idcontrolnet"
    CATEGORY = "📷InstantID"
    
    def load_idcontrolnet(self, controlnet_path):

        controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)

        return [controlnet]


class IDBaseModelLoader_fromhub_Node_Zho:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "base_model_path": ("STRING", {"default": "wangqixun/YamerMIX_v8"}),
                "controlnet": ("MODEL",)
            }
        }

    RETURN_TYPES = ("MODEL",)
    RETURN_NAMES = ("pipe",)
    FUNCTION = "load_model"
    CATEGORY = "📷InstantID"
  
    def load_model(self, base_model_path, controlnet):
        # Code to load the base model
        pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
            base_model_path,
            controlnet=controlnet,
            torch_dtype=torch.float16,
            local_dir="./checkpoints"
        ).to(device)
        return [pipe]


class IDBaseModelLoader_local_Node_Zho:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                "controlnet": ("MODEL",)
            }
        }

    RETURN_TYPES = ("MODEL",)
    RETURN_NAMES = ("pipe",)
    FUNCTION = "load_model"
    CATEGORY = "📷InstantID"
  
    def load_model(self, ckpt_name, controlnet):
        # Code to load the base model
        if not ckpt_name:
            raise ValueError("Please provide the ckpt_name parameter with the name of the checkpoint file.")

        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
            
        if not os.path.exists(ckpt_path):
            raise FileNotFoundError(f"Checkpoint file {ckpt_path} not found.")
                
        pipe = StableDiffusionXLInstantIDPipeline.from_single_file(
            pretrained_model_link_or_path=ckpt_path,
            controlnet=controlnet,
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16"
        ).to(device)
        return [pipe]


class Ipadapter_instantidLoader_Node_Zho:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "Ipadapter_instantid_path": ("STRING", {"default": "enter your path"}),
                "filename": ("STRING", {"default": "ip-adapter.bin"}),
                "pipe": ("MODEL",),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_ip_adapter_instantid"
    CATEGORY = "📷InstantID"

    def load_ip_adapter_instantid(self, pipe, Ipadapter_instantid_path, filename):
        # 使用hf_hub_download方法获取PhotoMaker文件的路径
        face_adapter = os.path.join(Ipadapter_instantid_path, filename)

        # load adapter
        pipe.load_ip_adapter_instantid(face_adapter)

        return [pipe]


class ID_Prompt_Style_Zho:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "prompt": ("STRING", {"default": "a woman, retro futurism, retro game", "multiline": True}),
                "negative_prompt": ("STRING", {"default": "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly", "multiline": True}),
                "style_name": (STYLE_NAMES, {"default": DEFAULT_STYLE_NAME})
            }
        }

    RETURN_TYPES = ('STRING','STRING',)
    RETURN_NAMES = ('positive_prompt','negative_prompt',)
    FUNCTION = "id_prompt_style"
    CATEGORY = "📷InstantID"

    def id_prompt_style(self, style_name, prompt, negative_prompt):
        prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
        
        return prompt, negative_prompt


class IDGenerationNode_Zho:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "face_image": ("IMAGE",),
                "pipe": ("MODEL",),
                "insightface": ("INSIGHTFACEMODEL",),
                "positive": ("STRING", {"multiline": True, "forceInput": True}),
                "negative": ("STRING", {"multiline": True, "forceInput": True}),
                "ip_adapter_scale": ("FLOAT", {"default": 0.8, "min": 0, "max": 1.0, "display": "slider"}),
                "controlnet_conditioning_scale": ("FLOAT", {"default": 0.8, "min": 0, "max": 1.0, "display": "slider"}),
                "steps": ("INT", {"default": 50, "min": 1, "max": 100, "step": 1, "display": "slider"}),
                "guidance_scale": ("FLOAT", {"default": 5, "min": 0, "max": 10, "display": "slider"}),
                "enhance_face_region": ("BOOLEAN", {"default": True}),
                "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
            },
            "optional": {
                "pose_image_optional": ("IMAGE",), 
            }
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "id_generate_image"
    CATEGORY = "📷InstantID"
                       
    def id_generate_image(self, insightface, positive, negative, face_image, pipe, ip_adapter_scale, controlnet_conditioning_scale, steps, guidance_scale, seed, enhance_face_region, pose_image_optional=None):

        face_image = resize_img(face_image)
        
        # prepare face emb
        face_info = insightface.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
        if not face_info:
            return "No face detected"

        face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[-1]
        face_emb = face_info['embedding']
        face_kps = draw_kps(face_image, face_info['kps'])
        width, height = face_kps.size

        if pose_image_optional is not None:
            pose_image = resize_img(pose_image_optional)
            face_info = insightface.get(cv2.cvtColor(np.array(pose_image), cv2.COLOR_RGB2BGR))
            if len(face_info) == 0:
                raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
        
            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info['kps'])
        
            width, height = face_kps.size

        if enhance_face_region:
            control_mask = np.zeros([height, width, 3])
            x1, y1, x2, y2 = face_info['bbox']
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            control_mask[y1:y2, x1:x2] = 255
            control_mask = Image.fromarray(control_mask.astype(np.uint8))
        else:
            control_mask = None
            
        generator = torch.Generator(device=device).manual_seed(seed)

        pipe.set_ip_adapter_scale(ip_adapter_scale)

        output = pipe(
            prompt=positive,
            negative_prompt=negative,
            image_embeds=face_emb,
            image=face_kps,
            control_mask=control_mask,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            num_inference_steps=steps,
            generator=generator,
            guidance_scale=guidance_scale,
            width=width,
            height=height,
            return_dict=False
            )

        # 检查输出类型并相应处理
        if isinstance(output, tuple):
            # 当返回的是元组时,第一个元素是图像列表
            images_list = output[0]
        else:
            # 如果返回的是 StableDiffusionXLPipelineOutput,需要从中提取图像
            images_list = output.images

        # 转换图像为 torch.Tensor,并调整维度顺序为 NHWC
        images_tensors = []
        for img in images_list:
            # 将 PIL.Image 转换为 numpy.ndarray
            img_array = np.array(img)
            # 转换 numpy.ndarray 为 torch.Tensor
            img_tensor = torch.from_numpy(img_array).float() / 255.
            # 转换图像格式为 CHW (如果需要)
            if img_tensor.ndim == 3 and img_tensor.shape[-1] == 3:
                img_tensor = img_tensor.permute(2, 0, 1)
            # 添加批次维度并转换为 NHWC
            img_tensor = img_tensor.unsqueeze(0).permute(0, 2, 3, 1)
            images_tensors.append(img_tensor)

        if len(images_tensors) > 1:
            output_image = torch.cat(images_tensors, dim=0)
        else:
            output_image = images_tensors[0]

        return (output_image,)



NODE_CLASS_MAPPINGS = {
    "InsightFaceLoader_Zho": InsightFaceLoader_Node_Zho,
    "IDControlNetLoader": IDControlNetLoaderNode_Zho,
    "IDBaseModelLoader_fromhub": IDBaseModelLoader_fromhub_Node_Zho,
    "IDBaseModelLoader_local": IDBaseModelLoader_local_Node_Zho,
    "Ipadapter_instantidLoader": Ipadapter_instantidLoader_Node_Zho,
    "ID_Prompt_Styler": ID_Prompt_Style_Zho,
    "IDGenerationNode": IDGenerationNode_Zho
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "InsightFaceLoader_Zho": "📷InsightFace Loader",
    "IDControlNetLoader": "📷ID ControlNet Loader",
    "IDBaseModelLoader_fromhub": "📷ID Base Model Loader from hub 🤗",
    "IDBaseModelLoader_local": "📷ID Base Model Loader locally",
    "Ipadapter_instantidLoader": "📷Ipadapter_instantid Loader",
    "ID_Prompt_Styler": "📷ID Prompt_Styler",
    "IDGenerationNode": "📷InstantID Generation"
}