Spaces:
Running
Running
File size: 32,342 Bytes
21d588d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
from ..utility.utility import tensor2pil, pil2tensor
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import torch
from torchvision.transforms import Resize, CenterCrop, InterpolationMode
import math
#based on nodes from mtb https://github.com/melMass/comfy_mtb
def bbox_to_region(bbox, target_size=None):
bbox = bbox_check(bbox, target_size)
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
def bbox_check(bbox, target_size=None):
if not target_size:
return bbox
new_bbox = (
bbox[0],
bbox[1],
min(target_size[0] - bbox[0], bbox[2]),
min(target_size[1] - bbox[1], bbox[3]),
)
return new_bbox
class BatchCropFromMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"masks": ("MASK",),
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"BBOX",
"INT",
"INT",
)
RETURN_NAMES = (
"original_images",
"cropped_images",
"bboxes",
"width",
"height",
)
FUNCTION = "crop"
CATEGORY = "KJNodes/masking"
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
if alpha == 0:
return prev_bbox_size
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
if alpha == 0:
return prev_center
return (
round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1])
)
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
cropped_images = []
self.max_bbox_width = 0
self.max_bbox_height = 0
# First, calculate the maximum bounding box size across all masks
curr_max_bbox_width = 0
curr_max_bbox_height = 0
for mask in masks:
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
width = max_x - min_x
height = max_y - min_y
curr_max_bbox_width = max(curr_max_bbox_width, width)
curr_max_bbox_height = max(curr_max_bbox_height, height)
# Smooth the changes in the bounding box size
self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha)
self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha)
# Apply the crop size multiplier
self.max_bbox_width = round(self.max_bbox_width * crop_size_mult)
self.max_bbox_height = round(self.max_bbox_height * crop_size_mult)
bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height
# Then, for each mask and corresponding image...
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (round(center_x), round(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_width and max_bbox_height
half_box_width = round(self.max_bbox_width / 2)
half_box_height = round(self.max_bbox_height / 2)
min_x = max(0, center[0] - half_box_width)
max_x = min(img.shape[1], center[0] + half_box_width)
min_y = max(0, center[1] - half_box_height)
max_y = min(img.shape[0], center[1] + half_box_height)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
# Crop the image from the bounding box
cropped_img = img[min_y:max_y, min_x:max_x, :]
# Calculate the new dimensions while maintaining the aspect ratio
new_height = min(cropped_img.shape[0], self.max_bbox_height)
new_width = round(new_height * bbox_aspect_ratio)
# Resize the image
resize_transform = Resize((new_height, new_width))
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
# Perform the center crop to the desired size
crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width)) # swap the order here if necessary
cropped_resized_img = crop_transform(resized_img)
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
cropped_out = torch.stack(cropped_images, dim=0)
return (original_images, cropped_out, bounding_boxes, self.max_bbox_width, self.max_bbox_height, )
class BatchUncrop:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"cropped_images": ("IMAGE",),
"bboxes": ("BBOX",),
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"border_top": ("BOOLEAN", {"default": True}),
"border_bottom": ("BOOLEAN", {"default": True}),
"border_left": ("BOOLEAN", {"default": True}),
"border_right": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "uncrop"
CATEGORY = "KJNodes/masking"
def uncrop(self, original_images, cropped_images, bboxes, border_blending, crop_rescale, border_top, border_bottom, border_left, border_right):
def inset_border(image, border_width, border_color, border_top, border_bottom, border_left, border_right):
draw = ImageDraw.Draw(image)
width, height = image.size
if border_top:
draw.rectangle((0, 0, width, border_width), fill=border_color)
if border_bottom:
draw.rectangle((0, height - border_width, width, height), fill=border_color)
if border_left:
draw.rectangle((0, 0, border_width, height), fill=border_color)
if border_right:
draw.rectangle((width - border_width, 0, width, height), fill=border_color)
return image
if len(original_images) != len(cropped_images):
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
# Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
if len(bboxes) > len(original_images):
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
bboxes = bboxes[:len(original_images)]
elif len(bboxes) < len(original_images):
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
input_images = tensor2pil(original_images)
crop_imgs = tensor2pil(cropped_images)
out_images = []
for i in range(len(input_images)):
img = input_images[i]
crop = crop_imgs[i]
bbox = bboxes[i]
# uncrop the image based on the bounding box
bb_x, bb_y, bb_width, bb_height = bbox
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
# scale factors
scale_x = crop_rescale
scale_y = crop_rescale
# scaled paste_region
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
# rescale the crop image to fit the paste_region
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
crop_img = crop.convert("RGB")
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0), border_top, border_bottom, border_left, border_right)
mask.paste(mask_block, paste_region)
blend.paste(crop_img, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
return (pil2tensor(out_images),)
class BatchCropFromMaskAdvanced:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"masks": ("MASK",),
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"MASK",
"IMAGE",
"MASK",
"BBOX",
"BBOX",
"INT",
"INT",
)
RETURN_NAMES = (
"original_images",
"cropped_images",
"cropped_masks",
"combined_crop_image",
"combined_crop_masks",
"bboxes",
"combined_bounding_box",
"bbox_width",
"bbox_height",
)
FUNCTION = "crop"
CATEGORY = "KJNodes/masking"
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
return (round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1]))
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
combined_bounding_box = []
cropped_images = []
cropped_masks = []
cropped_masks_out = []
combined_crop_out = []
combined_cropped_images = []
combined_cropped_masks = []
def calculate_bbox(mask):
non_zero_indices = np.nonzero(np.array(mask))
# handle empty masks
min_x, max_x, min_y, max_y = 0, 0, 0, 0
if len(non_zero_indices[1]) > 0 and len(non_zero_indices[0]) > 0:
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
width = max_x - min_x
height = max_y - min_y
bbox_size = max(width, height)
return min_x, max_x, min_y, max_y, bbox_size
combined_mask = torch.max(masks, dim=0)[0]
_mask = tensor2pil(combined_mask)[0]
new_min_x, new_max_x, new_min_y, new_max_y, combined_bbox_size = calculate_bbox(_mask)
center_x = (new_min_x + new_max_x) / 2
center_y = (new_min_y + new_max_y) / 2
half_box_size = round(combined_bbox_size // 2)
new_min_x = max(0, round(center_x - half_box_size))
new_max_x = min(original_images[0].shape[1], round(center_x + half_box_size))
new_min_y = max(0, round(center_y - half_box_size))
new_max_y = min(original_images[0].shape[0], round(center_y + half_box_size))
combined_bounding_box.append((new_min_x, new_min_y, new_max_x - new_min_x, new_max_y - new_min_y))
self.max_bbox_size = 0
# First, calculate the maximum bounding box size across all masks
curr_max_bbox_size = max(calculate_bbox(tensor2pil(mask)[0])[-1] for mask in masks)
# Smooth the changes in the bounding box size
self.max_bbox_size = self.smooth_bbox_size(self.max_bbox_size, curr_max_bbox_size, bbox_smooth_alpha)
# Apply the crop size multiplier
self.max_bbox_size = round(self.max_bbox_size * crop_size_mult)
# Make sure max_bbox_size is divisible by 16, if not, round it upwards so it is
self.max_bbox_size = math.ceil(self.max_bbox_size / 16) * 16
if self.max_bbox_size > original_images[0].shape[0] or self.max_bbox_size > original_images[0].shape[1]:
# max_bbox_size can only be as big as our input's width or height, and it has to be even
self.max_bbox_size = math.floor(min(original_images[0].shape[0], original_images[0].shape[1]) / 2) * 2
# Then, for each mask and corresponding image...
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
# check for empty masks
if len(non_zero_indices[0]) > 0 and len(non_zero_indices[1]) > 0:
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (round(center_x), round(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_size
half_box_size = self.max_bbox_size // 2
min_x = max(0, center[0] - half_box_size)
max_x = min(img.shape[1], center[0] + half_box_size)
min_y = max(0, center[1] - half_box_size)
max_y = min(img.shape[0], center[1] + half_box_size)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
# Crop the image from the bounding box
cropped_img = img[min_y:max_y, min_x:max_x, :]
cropped_mask = mask[min_y:max_y, min_x:max_x]
# Resize the cropped image to a fixed size
new_size = max(cropped_img.shape[0], cropped_img.shape[1])
resize_transform = Resize(new_size, interpolation=InterpolationMode.NEAREST, max_size=max(img.shape[0], img.shape[1]))
resized_mask = resize_transform(cropped_mask.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
# Perform the center crop to the desired size
# Constrain the crop to the smaller of our bbox or our image so we don't expand past the image dimensions.
crop_transform = CenterCrop((min(self.max_bbox_size, resized_img.shape[1]), min(self.max_bbox_size, resized_img.shape[2])))
cropped_resized_img = crop_transform(resized_img)
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
cropped_resized_mask = crop_transform(resized_mask)
cropped_masks.append(cropped_resized_mask)
combined_cropped_img = original_images[i][new_min_y:new_max_y, new_min_x:new_max_x, :]
combined_cropped_images.append(combined_cropped_img)
combined_cropped_mask = masks[i][new_min_y:new_max_y, new_min_x:new_max_x]
combined_cropped_masks.append(combined_cropped_mask)
else:
bounding_boxes.append((0, 0, img.shape[1], img.shape[0]))
cropped_images.append(img)
cropped_masks.append(mask)
combined_cropped_images.append(img)
combined_cropped_masks.append(mask)
cropped_out = torch.stack(cropped_images, dim=0)
combined_crop_out = torch.stack(combined_cropped_images, dim=0)
cropped_masks_out = torch.stack(cropped_masks, dim=0)
combined_crop_mask_out = torch.stack(combined_cropped_masks, dim=0)
return (original_images, cropped_out, cropped_masks_out, combined_crop_out, combined_crop_mask_out, bounding_boxes, combined_bounding_box, self.max_bbox_size, self.max_bbox_size)
class FilterZeroMasksAndCorrespondingImages:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"masks": ("MASK",),
},
"optional": {
"original_images": ("IMAGE",),
},
}
RETURN_TYPES = ("MASK", "IMAGE", "IMAGE", "INDEXES",)
RETURN_NAMES = ("non_zero_masks_out", "non_zero_mask_images_out", "zero_mask_images_out", "zero_mask_images_out_indexes",)
FUNCTION = "filter"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Filter out all the empty (i.e. all zero) mask in masks
Also filter out all the corresponding images in original_images by indexes if provide
original_images (optional): If provided, need have same length as masks.
"""
def filter(self, masks, original_images=None):
non_zero_masks = []
non_zero_mask_images = []
zero_mask_images = []
zero_mask_images_indexes = []
masks_num = len(masks)
also_process_images = False
if original_images is not None:
imgs_num = len(original_images)
if len(original_images) == masks_num:
also_process_images = True
else:
print(f"[WARNING] ignore input: original_images, due to number of original_images ({imgs_num}) is not equal to number of masks ({masks_num})")
for i in range(masks_num):
non_zero_num = np.count_nonzero(np.array(masks[i]))
if non_zero_num > 0:
non_zero_masks.append(masks[i])
if also_process_images:
non_zero_mask_images.append(original_images[i])
else:
zero_mask_images.append(original_images[i])
zero_mask_images_indexes.append(i)
non_zero_masks_out = torch.stack(non_zero_masks, dim=0)
non_zero_mask_images_out = zero_mask_images_out = zero_mask_images_out_indexes = None
if also_process_images:
non_zero_mask_images_out = torch.stack(non_zero_mask_images, dim=0)
if len(zero_mask_images) > 0:
zero_mask_images_out = torch.stack(zero_mask_images, dim=0)
zero_mask_images_out_indexes = zero_mask_images_indexes
return (non_zero_masks_out, non_zero_mask_images_out, zero_mask_images_out, zero_mask_images_out_indexes)
class InsertImageBatchByIndexes:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"images_to_insert": ("IMAGE",),
"insert_indexes": ("INDEXES",),
},
}
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("images_after_insert", )
FUNCTION = "insert"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
This node is designed to be use with node FilterZeroMasksAndCorrespondingImages
It inserts the images_to_insert into images according to insert_indexes
Returns:
images_after_insert: updated original images with origonal sequence order
"""
def insert(self, images, images_to_insert, insert_indexes):
images_after_insert = images
if images_to_insert is not None and insert_indexes is not None:
images_to_insert_num = len(images_to_insert)
insert_indexes_num = len(insert_indexes)
if images_to_insert_num == insert_indexes_num:
images_after_insert = []
i_images = 0
for i in range(len(images) + images_to_insert_num):
if i in insert_indexes:
images_after_insert.append(images_to_insert[insert_indexes.index(i)])
else:
images_after_insert.append(images[i_images])
i_images += 1
images_after_insert = torch.stack(images_after_insert, dim=0)
else:
print(f"[WARNING] skip this node, due to number of images_to_insert ({images_to_insert_num}) is not equal to number of insert_indexes ({insert_indexes_num})")
return (images_after_insert, )
class BatchUncropAdvanced:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"cropped_images": ("IMAGE",),
"cropped_masks": ("MASK",),
"combined_crop_mask": ("MASK",),
"bboxes": ("BBOX",),
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"use_combined_mask": ("BOOLEAN", {"default": False}),
"use_square_mask": ("BOOLEAN", {"default": True}),
},
"optional": {
"combined_bounding_box": ("BBOX", {"default": None}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "uncrop"
CATEGORY = "KJNodes/masking"
def uncrop(self, original_images, cropped_images, cropped_masks, combined_crop_mask, bboxes, border_blending, crop_rescale, use_combined_mask, use_square_mask, combined_bounding_box = None):
def inset_border(image, border_width=20, border_color=(0)):
width, height = image.size
bordered_image = Image.new(image.mode, (width, height), border_color)
bordered_image.paste(image, (0, 0))
draw = ImageDraw.Draw(bordered_image)
draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width)
return bordered_image
if len(original_images) != len(cropped_images):
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
# Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
if len(bboxes) > len(original_images):
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
bboxes = bboxes[:len(original_images)]
elif len(bboxes) < len(original_images):
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
crop_imgs = tensor2pil(cropped_images)
input_images = tensor2pil(original_images)
out_images = []
for i in range(len(input_images)):
img = input_images[i]
crop = crop_imgs[i]
bbox = bboxes[i]
if use_combined_mask:
bb_x, bb_y, bb_width, bb_height = combined_bounding_box[0]
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
mask = combined_crop_mask[i]
else:
bb_x, bb_y, bb_width, bb_height = bbox
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
mask = cropped_masks[i]
# scale paste_region
scale_x = scale_y = crop_rescale
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
# rescale the crop image to fit the paste_region
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
crop_img = crop.convert("RGB")
#border blending
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
if use_square_mask:
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0))
mask.paste(mask_block, paste_region)
else:
original_mask = tensor2pil(mask)[0]
original_mask = original_mask.resize((paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]))
mask = Image.new("L", img.size, 0)
mask.paste(original_mask, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
blend.paste(crop_img, paste_region)
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
return (pil2tensor(out_images),)
class SplitBboxes:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"bboxes": ("BBOX",),
"index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
},
}
RETURN_TYPES = ("BBOX","BBOX",)
RETURN_NAMES = ("bboxes_a","bboxes_b",)
FUNCTION = "splitbbox"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Splits the specified bbox list at the given index into two lists.
"""
def splitbbox(self, bboxes, index):
bboxes_a = bboxes[:index] # Sub-list from the start of bboxes up to (but not including) the index
bboxes_b = bboxes[index:] # Sub-list from the index to the end of bboxes
return (bboxes_a, bboxes_b,)
class BboxToInt:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"bboxes": ("BBOX",),
"index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
},
}
RETURN_TYPES = ("INT","INT","INT","INT","INT","INT",)
RETURN_NAMES = ("x_min","y_min","width","height", "center_x","center_y",)
FUNCTION = "bboxtoint"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Returns selected index from bounding box list as integers.
"""
def bboxtoint(self, bboxes, index):
x_min, y_min, width, height = bboxes[index]
center_x = int(x_min + width / 2)
center_y = int(y_min + height / 2)
return (x_min, y_min, width, height, center_x, center_y,)
class BboxVisualize:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"bboxes": ("BBOX",),
"line_width": ("INT", {"default": 1,"min": 1, "max": 10, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "visualizebbox"
DESCRIPTION = """
Visualizes the specified bbox on the image.
"""
CATEGORY = "KJNodes/masking"
def visualizebbox(self, bboxes, images, line_width):
image_list = []
for image, bbox in zip(images, bboxes):
x_min, y_min, width, height = bbox
# Ensure bbox coordinates are integers
x_min = int(x_min)
y_min = int(y_min)
width = int(width)
height = int(height)
# Permute the image dimensions
image = image.permute(2, 0, 1)
# Clone the image to draw bounding boxes
img_with_bbox = image.clone()
# Define the color for the bbox, e.g., red
color = torch.tensor([1, 0, 0], dtype=torch.float32)
# Ensure color tensor matches the image channels
if color.shape[0] != img_with_bbox.shape[0]:
color = color.unsqueeze(1).expand(-1, line_width)
# Draw lines for each side of the bbox with the specified line width
for lw in range(line_width):
# Top horizontal line
if y_min + lw < img_with_bbox.shape[1]:
img_with_bbox[:, y_min + lw, x_min:x_min + width] = color[:, None]
# Bottom horizontal line
if y_min + height - lw < img_with_bbox.shape[1]:
img_with_bbox[:, y_min + height - lw, x_min:x_min + width] = color[:, None]
# Left vertical line
if x_min + lw < img_with_bbox.shape[2]:
img_with_bbox[:, y_min:y_min + height, x_min + lw] = color[:, None]
# Right vertical line
if x_min + width - lw < img_with_bbox.shape[2]:
img_with_bbox[:, y_min:y_min + height, x_min + width - lw] = color[:, None]
# Permute the image dimensions back
img_with_bbox = img_with_bbox.permute(1, 2, 0).unsqueeze(0)
image_list.append(img_with_bbox)
return (torch.cat(image_list, dim=0),)
return (torch.cat(image_list, dim=0),) |