Spaces:
Running
Running
File size: 52,165 Bytes
21d588d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 |
import torch
import torch.nn.functional as F
from torchvision.transforms import functional as TF
from PIL import Image, ImageDraw, ImageFilter, ImageFont
import scipy.ndimage
import numpy as np
from contextlib import nullcontext
import os
import model_management
from comfy.utils import ProgressBar
from comfy.utils import common_upscale
from nodes import MAX_RESOLUTION
import folder_paths
from ..utility.utility import tensor2pil, pil2tensor
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
class BatchCLIPSeg:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"images": ("IMAGE",),
"text": ("STRING", {"multiline": False}),
"threshold": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 10.0, "step": 0.001}),
"binary_mask": ("BOOLEAN", {"default": True}),
"combine_mask": ("BOOLEAN", {"default": False}),
"use_cuda": ("BOOLEAN", {"default": True}),
},
"optional":
{
"blur_sigma": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"opt_model": ("CLIPSEGMODEL", ),
"prev_mask": ("MASK", {"default": None}),
"image_bg_level": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"invert": ("BOOLEAN", {"default": False}),
}
}
CATEGORY = "KJNodes/masking"
RETURN_TYPES = ("MASK", "IMAGE", )
RETURN_NAMES = ("Mask", "Image", )
FUNCTION = "segment_image"
DESCRIPTION = """
Segments an image or batch of images using CLIPSeg.
"""
def segment_image(self, images, text, threshold, binary_mask, combine_mask, use_cuda, blur_sigma=0.0, opt_model=None, prev_mask=None, invert= False, image_bg_level=0.5):
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import torchvision.transforms as transforms
offload_device = model_management.unet_offload_device()
device = model_management.get_torch_device()
if not use_cuda:
device = torch.device("cpu")
dtype = model_management.unet_dtype()
if opt_model is None:
checkpoint_path = os.path.join(folder_paths.models_dir,'clip_seg', 'clipseg-rd64-refined-fp16')
if not hasattr(self, "model"):
try:
if not os.path.exists(checkpoint_path):
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kijai/clipseg-rd64-refined-fp16", local_dir=checkpoint_path, local_dir_use_symlinks=False)
self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
except:
checkpoint_path = "CIDAS/clipseg-rd64-refined"
self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
processor = CLIPSegProcessor.from_pretrained(checkpoint_path)
else:
self.model = opt_model['model']
processor = opt_model['processor']
self.model.to(dtype).to(device)
B, H, W, C = images.shape
images = images.to(device)
autocast_condition = (dtype != torch.float32) and not model_management.is_device_mps(device)
with torch.autocast(model_management.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
PIL_images = [Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) for image in images ]
prompt = [text] * len(images)
input_prc = processor(text=prompt, images=PIL_images, return_tensors="pt")
for key in input_prc:
input_prc[key] = input_prc[key].to(device)
outputs = self.model(**input_prc)
mask_tensor = torch.sigmoid(outputs.logits)
mask_tensor = (mask_tensor - mask_tensor.min()) / (mask_tensor.max() - mask_tensor.min())
mask_tensor = torch.where(mask_tensor > (threshold), mask_tensor, torch.tensor(0, dtype=torch.float))
print(mask_tensor.shape)
if len(mask_tensor.shape) == 2:
mask_tensor = mask_tensor.unsqueeze(0)
mask_tensor = F.interpolate(mask_tensor.unsqueeze(1), size=(H, W), mode='nearest')
mask_tensor = mask_tensor.squeeze(1)
self.model.to(offload_device)
if binary_mask:
mask_tensor = (mask_tensor > 0).float()
if blur_sigma > 0:
kernel_size = int(6 * int(blur_sigma) + 1)
blur = transforms.GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))
mask_tensor = blur(mask_tensor)
if combine_mask:
mask_tensor = torch.max(mask_tensor, dim=0)[0]
mask_tensor = mask_tensor.unsqueeze(0).repeat(len(images),1,1)
del outputs
model_management.soft_empty_cache()
if prev_mask is not None:
if prev_mask.shape != mask_tensor.shape:
prev_mask = F.interpolate(prev_mask.unsqueeze(1), size=(H, W), mode='nearest')
mask_tensor = mask_tensor + prev_mask.to(device)
torch.clamp(mask_tensor, min=0.0, max=1.0)
if invert:
mask_tensor = 1 - mask_tensor
image_tensor = images * mask_tensor.unsqueeze(-1) + (1 - mask_tensor.unsqueeze(-1)) * image_bg_level
image_tensor = torch.clamp(image_tensor, min=0.0, max=1.0).cpu().float()
mask_tensor = mask_tensor.cpu().float()
return mask_tensor, image_tensor,
class DownloadAndLoadCLIPSeg:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"model": (
[ 'Kijai/clipseg-rd64-refined-fp16',
'CIDAS/clipseg-rd64-refined',
],
),
},
}
CATEGORY = "KJNodes/masking"
RETURN_TYPES = ("CLIPSEGMODEL",)
RETURN_NAMES = ("clipseg_model",)
FUNCTION = "segment_image"
DESCRIPTION = """
Downloads and loads CLIPSeg model with huggingface_hub,
to ComfyUI/models/clip_seg
"""
def segment_image(self, model):
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
checkpoint_path = os.path.join(folder_paths.models_dir,'clip_seg', os.path.basename(model))
if not hasattr(self, "model"):
if not os.path.exists(checkpoint_path):
from huggingface_hub import snapshot_download
snapshot_download(repo_id=model, local_dir=checkpoint_path, local_dir_use_symlinks=False)
self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
processor = CLIPSegProcessor.from_pretrained(checkpoint_path)
clipseg_model = {}
clipseg_model['model'] = self.model
clipseg_model['processor'] = processor
return clipseg_model,
class CreateTextMask:
RETURN_TYPES = ("IMAGE", "MASK",)
FUNCTION = "createtextmask"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
Creates a text image and mask.
Looks for fonts from this folder:
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts
If start_rotation and/or end_rotation are different values,
creates animation between them.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
"text_x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"text_y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"font_size": ("INT", {"default": 32,"min": 8, "max": 4096, "step": 1}),
"font_color": ("STRING", {"default": "white"}),
"text": ("STRING", {"default": "HELLO!", "multiline": True}),
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"start_rotation": ("INT", {"default": 0,"min": 0, "max": 359, "step": 1}),
"end_rotation": ("INT", {"default": 0,"min": -359, "max": 359, "step": 1}),
},
}
def createtextmask(self, frames, width, height, invert, text_x, text_y, text, font_size, font_color, font, start_rotation, end_rotation):
# Define the number of images in the batch
batch_size = frames
out = []
masks = []
rotation = start_rotation
if start_rotation != end_rotation:
rotation_increment = (end_rotation - start_rotation) / (batch_size - 1)
font_path = folder_paths.get_full_path("kjnodes_fonts", font)
# Generate the text
for i in range(batch_size):
image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(image)
font = ImageFont.truetype(font_path, font_size)
# Split the text into words
words = text.split()
# Initialize variables for line creation
lines = []
current_line = []
current_line_width = 0
try: #new pillow
# Iterate through words to create lines
for word in words:
word_width = font.getbbox(word)[2]
if current_line_width + word_width <= width - 2 * text_x:
current_line.append(word)
current_line_width += word_width + font.getbbox(" ")[2] # Add space width
else:
lines.append(" ".join(current_line))
current_line = [word]
current_line_width = word_width
except: #old pillow
for word in words:
word_width = font.getsize(word)[0]
if current_line_width + word_width <= width - 2 * text_x:
current_line.append(word)
current_line_width += word_width + font.getsize(" ")[0] # Add space width
else:
lines.append(" ".join(current_line))
current_line = [word]
current_line_width = word_width
# Add the last line if it's not empty
if current_line:
lines.append(" ".join(current_line))
# Draw each line of text separately
y_offset = text_y
for line in lines:
text_width = font.getlength(line)
text_height = font_size
text_center_x = text_x + text_width / 2
text_center_y = y_offset + text_height / 2
try:
draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga'])
except:
draw.text((text_x, y_offset), line, font=font, fill=font_color)
y_offset += text_height # Move to the next line
if start_rotation != end_rotation:
image = image.rotate(rotation, center=(text_center_x, text_center_y))
rotation += rotation_increment
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0), 1.0 - torch.cat(masks, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class ColorToMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "clip"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Converts chosen RGB value to a mask.
With batch inputs, the **per_batch**
controls the number of images processed at once.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"invert": ("BOOLEAN", {"default": False}),
"red": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"green": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"blue": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"threshold": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}),
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
},
}
def clip(self, images, red, green, blue, threshold, invert, per_batch):
color = torch.tensor([red, green, blue], dtype=torch.uint8)
black = torch.tensor([0, 0, 0], dtype=torch.uint8)
white = torch.tensor([255, 255, 255], dtype=torch.uint8)
if invert:
black, white = white, black
steps = images.shape[0]
pbar = ProgressBar(steps)
tensors_out = []
for start_idx in range(0, images.shape[0], per_batch):
# Calculate color distances
color_distances = torch.norm(images[start_idx:start_idx+per_batch] * 255 - color, dim=-1)
# Create a mask based on the threshold
mask = color_distances <= threshold
# Apply the mask to create new images
mask_out = torch.where(mask.unsqueeze(-1), white, black).float()
mask_out = mask_out.mean(dim=-1)
tensors_out.append(mask_out.cpu())
batch_count = mask_out.shape[0]
pbar.update(batch_count)
tensors_out = torch.cat(tensors_out, dim=0)
tensors_out = torch.clamp(tensors_out, min=0.0, max=1.0)
return tensors_out,
class CreateFluidMask:
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "createfluidmask"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"inflow_count": ("INT", {"default": 3,"min": 0, "max": 255, "step": 1}),
"inflow_velocity": ("INT", {"default": 1,"min": 0, "max": 255, "step": 1}),
"inflow_radius": ("INT", {"default": 8,"min": 0, "max": 255, "step": 1}),
"inflow_padding": ("INT", {"default": 50,"min": 0, "max": 255, "step": 1}),
"inflow_duration": ("INT", {"default": 60,"min": 0, "max": 255, "step": 1}),
},
}
#using code from https://github.com/GregTJ/stable-fluids
def createfluidmask(self, frames, width, height, invert, inflow_count, inflow_velocity, inflow_radius, inflow_padding, inflow_duration):
from ..utility.fluid import Fluid
try:
from scipy.special import erf
except:
from scipy.spatial import erf
out = []
masks = []
RESOLUTION = width, height
DURATION = frames
INFLOW_PADDING = inflow_padding
INFLOW_DURATION = inflow_duration
INFLOW_RADIUS = inflow_radius
INFLOW_VELOCITY = inflow_velocity
INFLOW_COUNT = inflow_count
print('Generating fluid solver, this may take some time.')
fluid = Fluid(RESOLUTION, 'dye')
center = np.floor_divide(RESOLUTION, 2)
r = np.min(center) - INFLOW_PADDING
points = np.linspace(-np.pi, np.pi, INFLOW_COUNT, endpoint=False)
points = tuple(np.array((np.cos(p), np.sin(p))) for p in points)
normals = tuple(-p for p in points)
points = tuple(r * p + center for p in points)
inflow_velocity = np.zeros_like(fluid.velocity)
inflow_dye = np.zeros(fluid.shape)
for p, n in zip(points, normals):
mask = np.linalg.norm(fluid.indices - p[:, None, None], axis=0) <= INFLOW_RADIUS
inflow_velocity[:, mask] += n[:, None] * INFLOW_VELOCITY
inflow_dye[mask] = 1
for f in range(DURATION):
print(f'Computing frame {f + 1} of {DURATION}.')
if f <= INFLOW_DURATION:
fluid.velocity += inflow_velocity
fluid.dye += inflow_dye
curl = fluid.step()[1]
# Using the error function to make the contrast a bit higher.
# Any other sigmoid function e.g. smoothstep would work.
curl = (erf(curl * 2) + 1) / 4
color = np.dstack((curl, np.ones(fluid.shape), fluid.dye))
color = (np.clip(color, 0, 1) * 255).astype('uint8')
image = np.array(color).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0),1.0 - torch.cat(masks, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class CreateAudioMask:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "createaudiomask"
CATEGORY = "KJNodes/deprecated"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 16,"min": 1, "max": 255, "step": 1}),
"scale": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 2.0, "step": 0.01}),
"audio_path": ("STRING", {"default": "audio.wav"}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
},
}
def createaudiomask(self, frames, width, height, invert, audio_path, scale):
try:
import librosa
except ImportError:
raise Exception("Can not import librosa. Install it with 'pip install librosa'")
batch_size = frames
out = []
masks = []
if audio_path == "audio.wav": #I don't know why relative path won't work otherwise...
audio_path = os.path.join(script_directory, audio_path)
audio, sr = librosa.load(audio_path)
spectrogram = np.abs(librosa.stft(audio))
for i in range(batch_size):
image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(image)
frame = spectrogram[:, i]
circle_radius = int(height * np.mean(frame))
circle_radius *= scale
circle_center = (width // 2, height // 2) # Calculate the center of the image
draw.ellipse([(circle_center[0] - circle_radius, circle_center[1] - circle_radius),
(circle_center[0] + circle_radius, circle_center[1] + circle_radius)],
fill='white')
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class CreateGradientMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "createmask"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
},
}
def createmask(self, frames, width, height, invert):
# Define the number of images in the batch
batch_size = frames
out = []
# Create an empty array to store the image batch
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
# Generate the black to white gradient for each image
for i in range(batch_size):
gradient = np.linspace(1.0, 0.0, width, dtype=np.float32)
time = i / frames # Calculate the time variable
offset_gradient = gradient - time # Offset the gradient values based on time
image_batch[i] = offset_gradient.reshape(1, -1)
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateFadeMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "createfademask"
CATEGORY = "KJNodes/deprecated"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 2,"min": 2, "max": 255, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"start_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
"midpoint_level": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
"end_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
"midpoint_frame": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
},
}
def createfademask(self, frames, width, height, invert, interpolation, start_level, midpoint_level, end_level, midpoint_frame):
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
batch_size = frames
out = []
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
if midpoint_frame == 0:
midpoint_frame = batch_size // 2
for i in range(batch_size):
if i <= midpoint_frame:
t = i / midpoint_frame
if interpolation == "ease_in":
t = ease_in(t)
elif interpolation == "ease_out":
t = ease_out(t)
elif interpolation == "ease_in_out":
t = ease_in_out(t)
color = start_level - t * (start_level - midpoint_level)
else:
t = (i - midpoint_frame) / (batch_size - midpoint_frame)
if interpolation == "ease_in":
t = ease_in(t)
elif interpolation == "ease_out":
t = ease_out(t)
elif interpolation == "ease_in_out":
t = ease_in_out(t)
color = midpoint_level - t * (midpoint_level - end_level)
color = np.clip(color, 0, 255)
image = np.full((height, width), color, dtype=np.float32)
image_batch[i] = image
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateFadeMaskAdvanced:
RETURN_TYPES = ("MASK",)
FUNCTION = "createfademask"
CATEGORY = "KJNodes/masking/generate"
DESCRIPTION = """
Create a batch of masks interpolated between given frames and values.
Uses same syntax as Fizz' BatchValueSchedule.
First value is the frame index (not that this starts from 0, not 1)
and the second value inside the brackets is the float value of the mask in range 0.0 - 1.0
For example the default values:
0:(0.0)
7:(1.0)
15:(0.0)
Would create a mask batch fo 16 frames, starting from black,
interpolating with the chosen curve to fully white at the 8th frame,
and interpolating from that to fully black at the 16th frame.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}),
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 16,"min": 2, "max": 255, "step": 1}),
"width": ("INT", {"default": 512,"min": 1, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 1, "max": 4096, "step": 1}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
},
}
def createfademask(self, frames, width, height, invert, points_string, interpolation):
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
# Parse the input string into a list of tuples
points = []
points_string = points_string.rstrip(',\n')
for point_str in points_string.split(','):
frame_str, color_str = point_str.split(':')
frame = int(frame_str.strip())
color = float(color_str.strip()[1:-1]) # Remove parentheses around color
points.append((frame, color))
# Check if the last frame is already in the points
if len(points) == 0 or points[-1][0] != frames - 1:
# If not, add it with the color of the last specified frame
points.append((frames - 1, points[-1][1] if points else 0))
# Sort the points by frame number
points.sort(key=lambda x: x[0])
batch_size = frames
out = []
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
# Index of the next point to interpolate towards
next_point = 1
for i in range(batch_size):
while next_point < len(points) and i > points[next_point][0]:
next_point += 1
# Interpolate between the previous point and the next point
prev_point = next_point - 1
t = (i - points[prev_point][0]) / (points[next_point][0] - points[prev_point][0])
if interpolation == "ease_in":
t = ease_in(t)
elif interpolation == "ease_out":
t = ease_out(t)
elif interpolation == "ease_in_out":
t = ease_in_out(t)
elif interpolation == "linear":
pass # No need to modify `t` for linear interpolation
color = points[prev_point][1] - t * (points[prev_point][1] - points[next_point][1])
color = np.clip(color, 0, 255)
image = np.full((height, width), color, dtype=np.float32)
image_batch[i] = image
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateMagicMask:
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "createmagicmask"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"frames": ("INT", {"default": 16,"min": 2, "max": 4096, "step": 1}),
"depth": ("INT", {"default": 12,"min": 1, "max": 500, "step": 1}),
"distortion": ("FLOAT", {"default": 1.5,"min": 0.0, "max": 100.0, "step": 0.01}),
"seed": ("INT", {"default": 123,"min": 0, "max": 99999999, "step": 1}),
"transitions": ("INT", {"default": 1,"min": 1, "max": 20, "step": 1}),
"frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
},
}
def createmagicmask(self, frames, transitions, depth, distortion, seed, frame_width, frame_height):
from ..utility.magictex import coordinate_grid, random_transform, magic
import matplotlib.pyplot as plt
rng = np.random.default_rng(seed)
out = []
coords = coordinate_grid((frame_width, frame_height))
# Calculate the number of frames for each transition
frames_per_transition = frames // transitions
# Generate a base set of parameters
base_params = {
"coords": random_transform(coords, rng),
"depth": depth,
"distortion": distortion,
}
for t in range(transitions):
# Generate a second set of parameters that is at most max_diff away from the base parameters
params1 = base_params.copy()
params2 = base_params.copy()
params1['coords'] = random_transform(coords, rng)
params2['coords'] = random_transform(coords, rng)
for i in range(frames_per_transition):
# Compute the interpolation factor
alpha = i / frames_per_transition
# Interpolate between the two sets of parameters
params = params1.copy()
params['coords'] = (1 - alpha) * params1['coords'] + alpha * params2['coords']
tex = magic(**params)
dpi = frame_width / 10
fig = plt.figure(figsize=(10, 10), dpi=dpi)
ax = fig.add_subplot(111)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.get_yaxis().set_ticks([])
ax.get_xaxis().set_ticks([])
ax.imshow(tex, aspect='auto')
fig.canvas.draw()
img = np.array(fig.canvas.renderer._renderer)
plt.close(fig)
pil_img = Image.fromarray(img).convert("L")
mask = torch.tensor(np.array(pil_img)) / 255.0
out.append(mask)
return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
class CreateShapeMask:
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "createshapemask"
CATEGORY = "KJNodes/masking/generate"
DESCRIPTION = """
Creates a mask or batch of masks with the specified shape.
Locations are center locations.
Grow value is the amount to grow the shape on each frame, creating animated masks.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"shape": (
[ 'circle',
'square',
'triangle',
],
{
"default": 'circle'
}),
"frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
"location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"grow": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"shape_width": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
"shape_height": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
},
}
def createshapemask(self, frames, frame_width, frame_height, location_x, location_y, shape_width, shape_height, grow, shape):
# Define the number of images in the batch
batch_size = frames
out = []
color = "white"
for i in range(batch_size):
image = Image.new("RGB", (frame_width, frame_height), "black")
draw = ImageDraw.Draw(image)
# Calculate the size for this frame and ensure it's not less than 0
current_width = max(0, shape_width + i*grow)
current_height = max(0, shape_height + i*grow)
if shape == 'circle' or shape == 'square':
# Define the bounding box for the shape
left_up_point = (location_x - current_width // 2, location_y - current_height // 2)
right_down_point = (location_x + current_width // 2, location_y + current_height // 2)
two_points = [left_up_point, right_down_point]
if shape == 'circle':
draw.ellipse(two_points, fill=color)
elif shape == 'square':
draw.rectangle(two_points, fill=color)
elif shape == 'triangle':
# Define the points for the triangle
left_up_point = (location_x - current_width // 2, location_y + current_height // 2) # bottom left
right_down_point = (location_x + current_width // 2, location_y + current_height // 2) # bottom right
top_point = (location_x, location_y - current_height // 2) # top point
draw.polygon([top_point, left_up_point, right_down_point], fill=color)
image = pil2tensor(image)
mask = image[:, :, :, 0]
out.append(mask)
outstack = torch.cat(out, dim=0)
return (outstack, 1.0 - outstack,)
class CreateVoronoiMask:
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "createvoronoi"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"frames": ("INT", {"default": 16,"min": 2, "max": 4096, "step": 1}),
"num_points": ("INT", {"default": 15,"min": 1, "max": 4096, "step": 1}),
"line_width": ("INT", {"default": 4,"min": 1, "max": 4096, "step": 1}),
"speed": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
"frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
},
}
def createvoronoi(self, frames, num_points, line_width, speed, frame_width, frame_height):
from scipy.spatial import Voronoi
# Define the number of images in the batch
batch_size = frames
out = []
# Calculate aspect ratio
aspect_ratio = frame_width / frame_height
# Create start and end points for each point, considering the aspect ratio
start_points = np.random.rand(num_points, 2)
start_points[:, 0] *= aspect_ratio
end_points = np.random.rand(num_points, 2)
end_points[:, 0] *= aspect_ratio
for i in range(batch_size):
# Interpolate the points' positions based on the current frame
t = (i * speed) / (batch_size - 1) # normalize to [0, 1] over the frames
t = np.clip(t, 0, 1) # ensure t is in [0, 1]
points = (1 - t) * start_points + t * end_points # lerp
# Adjust points for aspect ratio
points[:, 0] *= aspect_ratio
vor = Voronoi(points)
# Create a blank image with a white background
fig, ax = plt.subplots()
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.set_xlim([0, aspect_ratio]); ax.set_ylim([0, 1]) # adjust x limits
ax.axis('off')
ax.margins(0, 0)
fig.set_size_inches(aspect_ratio * frame_height/100, frame_height/100) # adjust figure size
ax.fill_between([0, 1], [0, 1], color='white')
# Plot each Voronoi ridge
for simplex in vor.ridge_vertices:
simplex = np.asarray(simplex)
if np.all(simplex >= 0):
plt.plot(vor.vertices[simplex, 0], vor.vertices[simplex, 1], 'k-', linewidth=line_width)
fig.canvas.draw()
img = np.array(fig.canvas.renderer._renderer)
plt.close(fig)
pil_img = Image.fromarray(img).convert("L")
mask = torch.tensor(np.array(pil_img)) / 255.0
out.append(mask)
return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
class GetMaskSizeAndCount:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask": ("MASK",),
}}
RETURN_TYPES = ("MASK","INT", "INT", "INT",)
RETURN_NAMES = ("mask", "width", "height", "count",)
FUNCTION = "getsize"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Returns the width, height and batch size of the mask,
and passes it through unchanged.
"""
def getsize(self, mask):
width = mask.shape[2]
height = mask.shape[1]
count = mask.shape[0]
return {"ui": {
"text": [f"{count}x{width}x{height}"]},
"result": (mask, width, height, count)
}
class GrowMaskWithBlur:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
"incremental_expandrate": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"tapered_corners": ("BOOLEAN", {"default": True}),
"flip_input": ("BOOLEAN", {"default": False}),
"blur_radius": ("FLOAT", {
"default": 0.0,
"min": 0.0,
"max": 100,
"step": 0.1
}),
"lerp_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"decay_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"fill_holes": ("BOOLEAN", {"default": False}),
},
}
CATEGORY = "KJNodes/masking"
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "expand_mask"
DESCRIPTION = """
# GrowMaskWithBlur
- mask: Input mask or mask batch
- expand: Expand or contract mask or mask batch by a given amount
- incremental_expandrate: increase expand rate by a given amount per frame
- tapered_corners: use tapered corners
- flip_input: flip input mask
- blur_radius: value higher than 0 will blur the mask
- lerp_alpha: alpha value for interpolation between frames
- decay_factor: decay value for interpolation between frames
- fill_holes: fill holes in the mask (slow)"""
def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, incremental_expandrate, lerp_alpha, decay_factor, fill_holes=False):
alpha = lerp_alpha
decay = decay_factor
if flip_input:
mask = 1.0 - mask
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]])
growmask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).cpu()
out = []
previous_output = None
current_expand = expand
for m in growmask:
output = m.numpy().astype(np.float32)
for _ in range(abs(round(current_expand))):
if current_expand < 0:
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
else:
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
if current_expand < 0:
current_expand -= abs(incremental_expandrate)
else:
current_expand += abs(incremental_expandrate)
if fill_holes:
binary_mask = output > 0
output = scipy.ndimage.binary_fill_holes(binary_mask)
output = output.astype(np.float32) * 255
output = torch.from_numpy(output)
if alpha < 1.0 and previous_output is not None:
# Interpolate between the previous and current frame
output = alpha * output + (1 - alpha) * previous_output
if decay < 1.0 and previous_output is not None:
# Add the decayed previous output to the current frame
output += decay * previous_output
output = output / output.max()
previous_output = output
out.append(output)
if blur_radius != 0:
# Convert the tensor list to PIL images, apply blur, and convert back
for idx, tensor in enumerate(out):
# Convert tensor to PIL image
pil_image = tensor2pil(tensor.cpu().detach())[0]
# Apply Gaussian blur
pil_image = pil_image.filter(ImageFilter.GaussianBlur(blur_radius))
# Convert back to tensor
out[idx] = pil2tensor(pil_image)
blurred = torch.cat(out, dim=0)
return (blurred, 1.0 - blurred)
else:
return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
class MaskBatchMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
},
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("masks",)
FUNCTION = "combine"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Creates an image batch from multiple masks.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def combine(self, inputcount, **kwargs):
mask = kwargs["mask_1"]
for c in range(1, inputcount):
new_mask = kwargs[f"mask_{c + 1}"]
if mask.shape[1:] != new_mask.shape[1:]:
new_mask = F.interpolate(new_mask.unsqueeze(1), size=(mask.shape[1], mask.shape[2]), mode="bicubic").squeeze(1)
mask = torch.cat((mask, new_mask), dim=0)
return (mask,)
class OffsetMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"angle": ("INT", { "default": 0, "min": -360, "max": 360, "step": 1, "display": "number" }),
"duplication_factor": ("INT", { "default": 1, "min": 1, "max": 1000, "step": 1, "display": "number" }),
"roll": ("BOOLEAN", { "default": False }),
"incremental": ("BOOLEAN", { "default": False }),
"padding_mode": (
[
'empty',
'border',
'reflection',
], {
"default": 'empty'
}),
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "offset"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Offsets the mask by the specified amount.
- mask: Input mask or mask batch
- x: Horizontal offset
- y: Vertical offset
- angle: Angle in degrees
- roll: roll edge wrapping
- duplication_factor: Number of times to duplicate the mask to form a batch
- border padding_mode: Padding mode for the mask
"""
def offset(self, mask, x, y, angle, roll=False, incremental=False, duplication_factor=1, padding_mode="empty"):
# Create duplicates of the mask batch
mask = mask.repeat(duplication_factor, 1, 1).clone()
batch_size, height, width = mask.shape
if angle != 0 and incremental:
for i in range(batch_size):
rotation_angle = angle * (i+1)
mask[i] = TF.rotate(mask[i].unsqueeze(0), rotation_angle).squeeze(0)
elif angle > 0:
for i in range(batch_size):
mask[i] = TF.rotate(mask[i].unsqueeze(0), angle).squeeze(0)
if roll:
if incremental:
for i in range(batch_size):
shift_x = min(x*(i+1), width-1)
shift_y = min(y*(i+1), height-1)
if shift_x != 0:
mask[i] = torch.roll(mask[i], shifts=shift_x, dims=1)
if shift_y != 0:
mask[i] = torch.roll(mask[i], shifts=shift_y, dims=0)
else:
shift_x = min(x, width-1)
shift_y = min(y, height-1)
if shift_x != 0:
mask = torch.roll(mask, shifts=shift_x, dims=2)
if shift_y != 0:
mask = torch.roll(mask, shifts=shift_y, dims=1)
else:
for i in range(batch_size):
if incremental:
temp_x = min(x * (i+1), width-1)
temp_y = min(y * (i+1), height-1)
else:
temp_x = min(x, width-1)
temp_y = min(y, height-1)
if temp_x > 0:
if padding_mode == 'empty':
mask[i] = torch.cat([torch.zeros((height, temp_x)), mask[i, :, :-temp_x]], dim=1)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, :, :-temp_x], (0, temp_x), mode=padding_mode)
elif temp_x < 0:
if padding_mode == 'empty':
mask[i] = torch.cat([mask[i, :, :temp_x], torch.zeros((height, -temp_x))], dim=1)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, :, -temp_x:], (temp_x, 0), mode=padding_mode)
if temp_y > 0:
if padding_mode == 'empty':
mask[i] = torch.cat([torch.zeros((temp_y, width)), mask[i, :-temp_y, :]], dim=0)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, :-temp_y, :], (0, temp_y), mode=padding_mode)
elif temp_y < 0:
if padding_mode == 'empty':
mask[i] = torch.cat([mask[i, :temp_y, :], torch.zeros((-temp_y, width))], dim=0)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, -temp_y:, :], (temp_y, 0), mode=padding_mode)
return mask,
class RoundMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask": ("MASK",),
}}
RETURN_TYPES = ("MASK",)
FUNCTION = "round"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Rounds the mask or batch of masks to a binary mask.
<img src="https://github.com/kijai/ComfyUI-KJNodes/assets/40791699/52c85202-f74e-4b96-9dac-c8bda5ddcc40" width="300" height="250" alt="RoundMask example">
"""
def round(self, mask):
mask = mask.round()
return (mask,)
class ResizeMask:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, "display": "number" }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, "display": "number" }),
"keep_proportions": ("BOOLEAN", { "default": False }),
"upscale_method": (s.upscale_methods,),
"crop": (["disabled","center"],),
}
}
RETURN_TYPES = ("MASK", "INT", "INT",)
RETURN_NAMES = ("mask", "width", "height",)
FUNCTION = "resize"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Resizes the mask or batch of masks to the specified width and height.
"""
def resize(self, mask, width, height, keep_proportions, upscale_method,crop):
if keep_proportions:
_, oh, ow = mask.shape
width = ow if width == 0 else width
height = oh if height == 0 else height
ratio = min(width / ow, height / oh)
width = round(ow*ratio)
height = round(oh*ratio)
outputs = mask.unsqueeze(1)
outputs = common_upscale(outputs, width, height, upscale_method, crop)
outputs = outputs.squeeze(1)
return(outputs, outputs.shape[2], outputs.shape[1],)
class RemapMaskRange:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
"max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "remap"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Sets new min and max values for the mask.
"""
def remap(self, mask, min, max):
# Find the maximum value in the mask
mask_max = torch.max(mask)
# If the maximum mask value is zero, avoid division by zero by setting it to 1
mask_max = mask_max if mask_max > 0 else 1
# Scale the mask values to the new range defined by min and max
# The highest pixel value in the mask will be scaled to max
scaled_mask = (mask / mask_max) * (max - min) + min
# Clamp the values to ensure they are within [0.0, 1.0]
scaled_mask = torch.clamp(scaled_mask, min=0.0, max=1.0)
return (scaled_mask, )
|