File size: 6,993 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
import comfy.model_management as model_management
import numpy as np
import warnings
from custom_controlnet_aux.dwpose import DwposeDetector, AnimalposeDetector
import os
import json

DWPOSE_MODEL_NAME = "yzd-v/DWPose"
#Trigger startup caching for onnxruntime
GPU_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CoreMLExecutionProvider"]
def check_ort_gpu():
    try:
        import onnxruntime as ort
        for provider in GPU_PROVIDERS:
            if provider in ort.get_available_providers():
                return True
        return False
    except:
        return False

if not os.environ.get("DWPOSE_ONNXRT_CHECKED"):
    if check_ort_gpu():
        print("DWPose: Onnxruntime with acceleration providers detected")
    else:
        warnings.warn("DWPose: Onnxruntime not found or doesn't come with acceleration providers, switch to OpenCV with CPU device. DWPose might run very slowly")
        os.environ['AUX_ORT_PROVIDERS'] = ''
    os.environ["DWPOSE_ONNXRT_CHECKED"] = '1'

class DWPose_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(
            detect_hand=INPUT.COMBO(["enable", "disable"]),
            detect_body=INPUT.COMBO(["enable", "disable"]),
            detect_face=INPUT.COMBO(["enable", "disable"]),
            resolution=INPUT.RESOLUTION(),
            bbox_detector=INPUT.COMBO(
                ["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
                default="yolox_l.onnx"
            ),
            pose_estimator=INPUT.COMBO(
                ["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"],
                default="dw-ll_ucoco_384_bs5.torchscript.pt"
            ),
            scale_stick_for_xinsr_cn=INPUT.COMBO(["disable", "enable"])
        )

    RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
    FUNCTION = "estimate_pose"

    CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"

    def estimate_pose(self, image, detect_hand="enable", detect_body="enable", detect_face="enable", resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx", scale_stick_for_xinsr_cn="disable", **kwargs):
        if bbox_detector == "yolox_l.onnx":
            yolo_repo = DWPOSE_MODEL_NAME
        elif "yolox" in bbox_detector:
            yolo_repo = "hr16/yolox-onnx"
        elif "yolo_nas" in bbox_detector:
            yolo_repo = "hr16/yolo-nas-fp16"
        else:
            raise NotImplementedError(f"Download mechanism for {bbox_detector}")

        if pose_estimator == "dw-ll_ucoco_384.onnx":
            pose_repo = DWPOSE_MODEL_NAME
        elif pose_estimator.endswith(".onnx"):
            pose_repo = "hr16/UnJIT-DWPose"
        elif pose_estimator.endswith(".torchscript.pt"):
            pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
        else:
            raise NotImplementedError(f"Download mechanism for {pose_estimator}")

        model = DwposeDetector.from_pretrained(
            pose_repo,
            yolo_repo,
            det_filename=bbox_detector, pose_filename=pose_estimator,
            torchscript_device=model_management.get_torch_device()
        )
        detect_hand = detect_hand == "enable"
        detect_body = detect_body == "enable"
        detect_face = detect_face == "enable"
        scale_stick_for_xinsr_cn = scale_stick_for_xinsr_cn == "enable"
        self.openpose_dicts = []
        def func(image, **kwargs):
            pose_img, openpose_dict = model(image, **kwargs)
            self.openpose_dicts.append(openpose_dict)
            return pose_img

        out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution, xinsr_stick_scaling=scale_stick_for_xinsr_cn)
        del model
        return {
            'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
            "result": (out, self.openpose_dicts)
        }

class AnimalPose_Preprocessor:
    @classmethod
    def INPUT_TYPES(s):
        return define_preprocessor_inputs(
            bbox_detector = INPUT.COMBO(
                ["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
                default="yolox_l.torchscript.pt"
            ),
            pose_estimator = INPUT.COMBO(
                ["rtmpose-m_ap10k_256_bs5.torchscript.pt", "rtmpose-m_ap10k_256.onnx"],
                default="rtmpose-m_ap10k_256_bs5.torchscript.pt"
            ),
            resolution = INPUT.RESOLUTION()
        )

    RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
    FUNCTION = "estimate_pose"

    CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"

    def estimate_pose(self, image, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="rtmpose-m_ap10k_256.onnx", **kwargs):
        if bbox_detector == "yolox_l.onnx":
            yolo_repo = DWPOSE_MODEL_NAME
        elif "yolox" in bbox_detector:
            yolo_repo = "hr16/yolox-onnx"
        elif "yolo_nas" in bbox_detector:
            yolo_repo = "hr16/yolo-nas-fp16"
        else:
            raise NotImplementedError(f"Download mechanism for {bbox_detector}")

        if pose_estimator == "dw-ll_ucoco_384.onnx":
            pose_repo = DWPOSE_MODEL_NAME
        elif pose_estimator.endswith(".onnx"):
            pose_repo = "hr16/UnJIT-DWPose"
        elif pose_estimator.endswith(".torchscript.pt"):
            pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
        else:
            raise NotImplementedError(f"Download mechanism for {pose_estimator}")

        model = AnimalposeDetector.from_pretrained(
            pose_repo,
            yolo_repo,
            det_filename=bbox_detector, pose_filename=pose_estimator,
            torchscript_device=model_management.get_torch_device()
        )

        self.openpose_dicts = []
        def func(image, **kwargs):
            pose_img, openpose_dict = model(image, **kwargs)
            self.openpose_dicts.append(openpose_dict)
            return pose_img

        out = common_annotator_call(func, image, image_and_json=True, resolution=resolution)
        del model
        return {
            'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
            "result": (out, self.openpose_dicts)
        }

NODE_CLASS_MAPPINGS = {
    "DWPreprocessor": DWPose_Preprocessor,
    "AnimalPosePreprocessor": AnimalPose_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "DWPreprocessor": "DWPose Estimator",
    "AnimalPosePreprocessor": "AnimalPose Estimator (AP10K)"
}