Spaces:
Running
Running
File size: 41,142 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 |
from __future__ import division
from typing import Optional, Sequence, Union
from warnings import warn
import cv2
import numpy as np
import skimage
from custom_albumentations import random_utils
from custom_albumentations.augmentations.utils import (
MAX_VALUES_BY_DTYPE,
_maybe_process_in_chunks,
clip,
clipped,
ensure_contiguous,
is_grayscale_image,
is_rgb_image,
non_rgb_warning,
preserve_channel_dim,
preserve_shape,
)
__all__ = [
"add_fog",
"add_rain",
"add_shadow",
"add_gravel",
"add_snow",
"add_sun_flare",
"add_weighted",
"adjust_brightness_torchvision",
"adjust_contrast_torchvision",
"adjust_hue_torchvision",
"adjust_saturation_torchvision",
"brightness_contrast_adjust",
"channel_shuffle",
"clahe",
"convolve",
"downscale",
"equalize",
"fancy_pca",
"from_float",
"gamma_transform",
"gauss_noise",
"image_compression",
"invert",
"iso_noise",
"linear_transformation_rgb",
"move_tone_curve",
"multiply",
"noop",
"normalize",
"posterize",
"shift_hsv",
"shift_rgb",
"solarize",
"superpixels",
"swap_tiles_on_image",
"to_float",
"to_gray",
"gray_to_rgb",
"unsharp_mask",
]
def normalize_cv2(img, mean, denominator):
if mean.shape and len(mean) != 4 and mean.shape != img.shape:
mean = np.array(mean.tolist() + [0] * (4 - len(mean)), dtype=np.float64)
if not denominator.shape:
denominator = np.array([denominator.tolist()] * 4, dtype=np.float64)
elif len(denominator) != 4 and denominator.shape != img.shape:
denominator = np.array(denominator.tolist() + [1] * (4 - len(denominator)), dtype=np.float64)
img = np.ascontiguousarray(img.astype("float32"))
cv2.subtract(img, mean.astype(np.float64), img)
cv2.multiply(img, denominator.astype(np.float64), img)
return img
def normalize_numpy(img, mean, denominator):
img = img.astype(np.float32)
img -= mean
img *= denominator
return img
def normalize(img, mean, std, max_pixel_value=255.0):
mean = np.array(mean, dtype=np.float32)
mean *= max_pixel_value
std = np.array(std, dtype=np.float32)
std *= max_pixel_value
denominator = np.reciprocal(std, dtype=np.float32)
if img.ndim == 3 and img.shape[-1] == 3:
return normalize_cv2(img, mean, denominator)
return normalize_numpy(img, mean, denominator)
def _shift_hsv_uint8(img, hue_shift, sat_shift, val_shift):
dtype = img.dtype
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
hue, sat, val = cv2.split(img)
if hue_shift != 0:
lut_hue = np.arange(0, 256, dtype=np.int16)
lut_hue = np.mod(lut_hue + hue_shift, 180).astype(dtype)
hue = cv2.LUT(hue, lut_hue)
if sat_shift != 0:
lut_sat = np.arange(0, 256, dtype=np.int16)
lut_sat = np.clip(lut_sat + sat_shift, 0, 255).astype(dtype)
sat = cv2.LUT(sat, lut_sat)
if val_shift != 0:
lut_val = np.arange(0, 256, dtype=np.int16)
lut_val = np.clip(lut_val + val_shift, 0, 255).astype(dtype)
val = cv2.LUT(val, lut_val)
img = cv2.merge((hue, sat, val)).astype(dtype)
img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
return img
def _shift_hsv_non_uint8(img, hue_shift, sat_shift, val_shift):
dtype = img.dtype
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
hue, sat, val = cv2.split(img)
if hue_shift != 0:
hue = cv2.add(hue, hue_shift)
hue = np.mod(hue, 360) # OpenCV fails with negative values
if sat_shift != 0:
sat = clip(cv2.add(sat, sat_shift), dtype, 1.0)
if val_shift != 0:
val = clip(cv2.add(val, val_shift), dtype, 1.0)
img = cv2.merge((hue, sat, val))
img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
return img
@preserve_shape
def shift_hsv(img, hue_shift, sat_shift, val_shift):
if hue_shift == 0 and sat_shift == 0 and val_shift == 0:
return img
is_gray = is_grayscale_image(img)
if is_gray:
if hue_shift != 0 or sat_shift != 0:
hue_shift = 0
sat_shift = 0
warn(
"HueSaturationValue: hue_shift and sat_shift are not applicable to grayscale image. "
"Set them to 0 or use RGB image"
)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
if img.dtype == np.uint8:
img = _shift_hsv_uint8(img, hue_shift, sat_shift, val_shift)
else:
img = _shift_hsv_non_uint8(img, hue_shift, sat_shift, val_shift)
if is_gray:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
def solarize(img, threshold=128):
"""Invert all pixel values above a threshold.
Args:
img (numpy.ndarray): The image to solarize.
threshold (int): All pixels above this greyscale level are inverted.
Returns:
numpy.ndarray: Solarized image.
"""
dtype = img.dtype
max_val = MAX_VALUES_BY_DTYPE[dtype]
if dtype == np.dtype("uint8"):
lut = [(i if i < threshold else max_val - i) for i in range(max_val + 1)]
prev_shape = img.shape
img = cv2.LUT(img, np.array(lut, dtype=dtype))
if len(prev_shape) != len(img.shape):
img = np.expand_dims(img, -1)
return img
result_img = img.copy()
cond = img >= threshold
result_img[cond] = max_val - result_img[cond]
return result_img
@preserve_shape
def posterize(img, bits):
"""Reduce the number of bits for each color channel.
Args:
img (numpy.ndarray): image to posterize.
bits (int): number of high bits. Must be in range [0, 8]
Returns:
numpy.ndarray: Image with reduced color channels.
"""
bits = np.uint8(bits)
if img.dtype != np.uint8:
raise TypeError("Image must have uint8 channel type")
if np.any((bits < 0) | (bits > 8)):
raise ValueError("bits must be in range [0, 8]")
if not bits.shape or len(bits) == 1:
if bits == 0:
return np.zeros_like(img)
if bits == 8:
return img.copy()
lut = np.arange(0, 256, dtype=np.uint8)
mask = ~np.uint8(2 ** (8 - bits) - 1)
lut &= mask
return cv2.LUT(img, lut)
if not is_rgb_image(img):
raise TypeError("If bits is iterable image must be RGB")
result_img = np.empty_like(img)
for i, channel_bits in enumerate(bits):
if channel_bits == 0:
result_img[..., i] = np.zeros_like(img[..., i])
elif channel_bits == 8:
result_img[..., i] = img[..., i].copy()
else:
lut = np.arange(0, 256, dtype=np.uint8)
mask = ~np.uint8(2 ** (8 - channel_bits) - 1)
lut &= mask
result_img[..., i] = cv2.LUT(img[..., i], lut)
return result_img
def _equalize_pil(img, mask=None):
histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel()
h = [_f for _f in histogram if _f]
if len(h) <= 1:
return img.copy()
step = np.sum(h[:-1]) // 255
if not step:
return img.copy()
lut = np.empty(256, dtype=np.uint8)
n = step // 2
for i in range(256):
lut[i] = min(n // step, 255)
n += histogram[i]
return cv2.LUT(img, np.array(lut))
def _equalize_cv(img, mask=None):
if mask is None:
return cv2.equalizeHist(img)
histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel()
i = 0
for val in histogram:
if val > 0:
break
i += 1
i = min(i, 255)
total = np.sum(histogram)
if histogram[i] == total:
return np.full_like(img, i)
scale = 255.0 / (total - histogram[i])
_sum = 0
lut = np.zeros(256, dtype=np.uint8)
i += 1
for i in range(i, len(histogram)):
_sum += histogram[i]
lut[i] = clip(round(_sum * scale), np.dtype("uint8"), 255)
return cv2.LUT(img, lut)
@preserve_channel_dim
def equalize(img, mask=None, mode="cv", by_channels=True):
"""Equalize the image histogram.
Args:
img (numpy.ndarray): RGB or grayscale image.
mask (numpy.ndarray): An optional mask. If given, only the pixels selected by
the mask are included in the analysis. Maybe 1 channel or 3 channel array.
mode (str): {'cv', 'pil'}. Use OpenCV or Pillow equalization method.
by_channels (bool): If True, use equalization by channels separately,
else convert image to YCbCr representation and use equalization by `Y` channel.
Returns:
numpy.ndarray: Equalized image.
"""
if img.dtype != np.uint8:
raise TypeError("Image must have uint8 channel type")
modes = ["cv", "pil"]
if mode not in modes:
raise ValueError("Unsupported equalization mode. Supports: {}. " "Got: {}".format(modes, mode))
if mask is not None:
if is_rgb_image(mask) and is_grayscale_image(img):
raise ValueError("Wrong mask shape. Image shape: {}. " "Mask shape: {}".format(img.shape, mask.shape))
if not by_channels and not is_grayscale_image(mask):
raise ValueError(
"When by_channels=False only 1-channel mask supports. " "Mask shape: {}".format(mask.shape)
)
if mode == "pil":
function = _equalize_pil
else:
function = _equalize_cv
if mask is not None:
mask = mask.astype(np.uint8)
if is_grayscale_image(img):
return function(img, mask)
if not by_channels:
result_img = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
result_img[..., 0] = function(result_img[..., 0], mask)
return cv2.cvtColor(result_img, cv2.COLOR_YCrCb2RGB)
result_img = np.empty_like(img)
for i in range(3):
if mask is None:
_mask = None
elif is_grayscale_image(mask):
_mask = mask
else:
_mask = mask[..., i]
result_img[..., i] = function(img[..., i], _mask)
return result_img
@preserve_shape
def move_tone_curve(img, low_y, high_y):
"""Rescales the relationship between bright and dark areas of the image by manipulating its tone curve.
Args:
img (numpy.ndarray): RGB or grayscale image.
low_y (float): y-position of a Bezier control point used
to adjust the tone curve, must be in range [0, 1]
high_y (float): y-position of a Bezier control point used
to adjust image tone curve, must be in range [0, 1]
"""
input_dtype = img.dtype
if low_y < 0 or low_y > 1:
raise ValueError("low_shift must be in range [0, 1]")
if high_y < 0 or high_y > 1:
raise ValueError("high_shift must be in range [0, 1]")
if input_dtype != np.uint8:
raise ValueError("Unsupported image type {}".format(input_dtype))
t = np.linspace(0.0, 1.0, 256)
# Defines responze of a four-point bezier curve
def evaluate_bez(t):
return 3 * (1 - t) ** 2 * t * low_y + 3 * (1 - t) * t**2 * high_y + t**3
evaluate_bez = np.vectorize(evaluate_bez)
remapping = np.rint(evaluate_bez(t) * 255).astype(np.uint8)
lut_fn = _maybe_process_in_chunks(cv2.LUT, lut=remapping)
img = lut_fn(img)
return img
@clipped
def _shift_rgb_non_uint8(img, r_shift, g_shift, b_shift):
if r_shift == g_shift == b_shift:
return img + r_shift
result_img = np.empty_like(img)
shifts = [r_shift, g_shift, b_shift]
for i, shift in enumerate(shifts):
result_img[..., i] = img[..., i] + shift
return result_img
def _shift_image_uint8(img, value):
max_value = MAX_VALUES_BY_DTYPE[img.dtype]
lut = np.arange(0, max_value + 1).astype("float32")
lut += value
lut = np.clip(lut, 0, max_value).astype(img.dtype)
return cv2.LUT(img, lut)
@preserve_shape
def _shift_rgb_uint8(img, r_shift, g_shift, b_shift):
if r_shift == g_shift == b_shift:
h, w, c = img.shape
img = img.reshape([h, w * c])
return _shift_image_uint8(img, r_shift)
result_img = np.empty_like(img)
shifts = [r_shift, g_shift, b_shift]
for i, shift in enumerate(shifts):
result_img[..., i] = _shift_image_uint8(img[..., i], shift)
return result_img
def shift_rgb(img, r_shift, g_shift, b_shift):
if img.dtype == np.uint8:
return _shift_rgb_uint8(img, r_shift, g_shift, b_shift)
return _shift_rgb_non_uint8(img, r_shift, g_shift, b_shift)
@clipped
def linear_transformation_rgb(img, transformation_matrix):
result_img = cv2.transform(img, transformation_matrix)
return result_img
@preserve_channel_dim
def clahe(img, clip_limit=2.0, tile_grid_size=(8, 8)):
if img.dtype != np.uint8:
raise TypeError("clahe supports only uint8 inputs")
clahe_mat = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
if len(img.shape) == 2 or img.shape[2] == 1:
img = clahe_mat.apply(img)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
img[:, :, 0] = clahe_mat.apply(img[:, :, 0])
img = cv2.cvtColor(img, cv2.COLOR_LAB2RGB)
return img
@preserve_shape
def convolve(img, kernel):
conv_fn = _maybe_process_in_chunks(cv2.filter2D, ddepth=-1, kernel=kernel)
return conv_fn(img)
@preserve_shape
def image_compression(img, quality, image_type):
if image_type in [".jpeg", ".jpg"]:
quality_flag = cv2.IMWRITE_JPEG_QUALITY
elif image_type == ".webp":
quality_flag = cv2.IMWRITE_WEBP_QUALITY
else:
NotImplementedError("Only '.jpg' and '.webp' compression transforms are implemented. ")
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
warn(
"Image compression augmentation "
"is most effective with uint8 inputs, "
"{} is used as input.".format(input_dtype),
UserWarning,
)
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for image augmentation".format(input_dtype))
_, encoded_img = cv2.imencode(image_type, img, (int(quality_flag), quality))
img = cv2.imdecode(encoded_img, cv2.IMREAD_UNCHANGED)
if needs_float:
img = to_float(img, max_value=255)
return img
@preserve_shape
def add_snow(img, snow_point, brightness_coeff):
"""Bleaches out pixels, imitation snow.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): Image.
snow_point: Number of show points.
brightness_coeff: Brightness coefficient.
Returns:
numpy.ndarray: Image.
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
snow_point *= 127.5 # = 255 / 2
snow_point += 85 # = 255 / 3
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomSnow augmentation".format(input_dtype))
image_HLS = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
image_HLS = np.array(image_HLS, dtype=np.float32)
image_HLS[:, :, 1][image_HLS[:, :, 1] < snow_point] *= brightness_coeff
image_HLS[:, :, 1] = clip(image_HLS[:, :, 1], np.uint8, 255)
image_HLS = np.array(image_HLS, dtype=np.uint8)
image_RGB = cv2.cvtColor(image_HLS, cv2.COLOR_HLS2RGB)
if needs_float:
image_RGB = to_float(image_RGB, max_value=255)
return image_RGB
@preserve_shape
def add_rain(
img,
slant,
drop_length,
drop_width,
drop_color,
blur_value,
brightness_coefficient,
rain_drops,
):
"""
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): Image.
slant (int):
drop_length:
drop_width:
drop_color:
blur_value (int): Rainy view are blurry.
brightness_coefficient (float): Rainy days are usually shady.
rain_drops:
Returns:
numpy.ndarray: Image.
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomRain augmentation".format(input_dtype))
image = img.copy()
for rain_drop_x0, rain_drop_y0 in rain_drops:
rain_drop_x1 = rain_drop_x0 + slant
rain_drop_y1 = rain_drop_y0 + drop_length
cv2.line(
image,
(rain_drop_x0, rain_drop_y0),
(rain_drop_x1, rain_drop_y1),
drop_color,
drop_width,
)
image = cv2.blur(image, (blur_value, blur_value)) # rainy view are blurry
image_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32)
image_hsv[:, :, 2] *= brightness_coefficient
image_rgb = cv2.cvtColor(image_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@preserve_shape
def add_fog(img, fog_coef, alpha_coef, haze_list):
"""Add fog to the image.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): Image.
fog_coef (float): Fog coefficient.
alpha_coef (float): Alpha coefficient.
haze_list (list):
Returns:
numpy.ndarray: Image.
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomFog augmentation".format(input_dtype))
width = img.shape[1]
hw = max(int(width // 3 * fog_coef), 10)
for haze_points in haze_list:
x, y = haze_points
overlay = img.copy()
output = img.copy()
alpha = alpha_coef * fog_coef
rad = hw // 2
point = (x + hw // 2, y + hw // 2)
cv2.circle(overlay, point, int(rad), (255, 255, 255), -1)
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
img = output.copy()
image_rgb = cv2.blur(img, (hw // 10, hw // 10))
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@preserve_shape
def add_sun_flare(img, flare_center_x, flare_center_y, src_radius, src_color, circles):
"""Add sun flare.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray):
flare_center_x (float):
flare_center_y (float):
src_radius:
src_color (int, int, int):
circles (list):
Returns:
numpy.ndarray:
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomSunFlareaugmentation".format(input_dtype))
overlay = img.copy()
output = img.copy()
for alpha, (x, y), rad3, (r_color, g_color, b_color) in circles:
cv2.circle(overlay, (x, y), rad3, (r_color, g_color, b_color), -1)
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
point = (int(flare_center_x), int(flare_center_y))
overlay = output.copy()
num_times = src_radius // 10
alpha = np.linspace(0.0, 1, num=num_times)
rad = np.linspace(1, src_radius, num=num_times)
for i in range(num_times):
cv2.circle(overlay, point, int(rad[i]), src_color, -1)
alp = alpha[num_times - i - 1] * alpha[num_times - i - 1] * alpha[num_times - i - 1]
cv2.addWeighted(overlay, alp, output, 1 - alp, 0, output)
image_rgb = output
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@ensure_contiguous
@preserve_shape
def add_shadow(img, vertices_list):
"""Add shadows to the image.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray):
vertices_list (list):
Returns:
numpy.ndarray:
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomShadow augmentation".format(input_dtype))
image_hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
mask = np.zeros_like(img)
# adding all shadow polygons on empty mask, single 255 denotes only red channel
for vertices in vertices_list:
cv2.fillPoly(mask, vertices, 255)
# if red channel is hot, image's "Lightness" channel's brightness is lowered
red_max_value_ind = mask[:, :, 0] == 255
image_hls[:, :, 1][red_max_value_ind] = image_hls[:, :, 1][red_max_value_ind] * 0.5
image_rgb = cv2.cvtColor(image_hls, cv2.COLOR_HLS2RGB)
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@ensure_contiguous
@preserve_shape
def add_gravel(img: np.ndarray, gravels: list):
"""Add gravel to the image.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): image to add gravel to
gravels (list): list of gravel parameters. (float, float, float, float):
(top-left x, top-left y, bottom-right x, bottom right y)
Returns:
numpy.ndarray:
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for AddGravel augmentation".format(input_dtype))
image_hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
for gravel in gravels:
y1, y2, x1, x2, sat = gravel
image_hls[x1:x2, y1:y2, 1] = sat
image_rgb = cv2.cvtColor(image_hls, cv2.COLOR_HLS2RGB)
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
def invert(img: np.ndarray) -> np.ndarray:
# Supports all the valid dtypes
# clips the img to avoid unexpected behaviour.
return MAX_VALUES_BY_DTYPE[img.dtype] - img
def channel_shuffle(img, channels_shuffled):
img = img[..., channels_shuffled]
return img
@preserve_shape
def gamma_transform(img, gamma):
if img.dtype == np.uint8:
table = (np.arange(0, 256.0 / 255, 1.0 / 255) ** gamma) * 255
img = cv2.LUT(img, table.astype(np.uint8))
else:
img = np.power(img, gamma)
return img
@clipped
def gauss_noise(image, gauss):
image = image.astype("float32")
return image + gauss
@clipped
def _brightness_contrast_adjust_non_uint(img, alpha=1, beta=0, beta_by_max=False):
dtype = img.dtype
img = img.astype("float32")
if alpha != 1:
img *= alpha
if beta != 0:
if beta_by_max:
max_value = MAX_VALUES_BY_DTYPE[dtype]
img += beta * max_value
else:
img += beta * np.mean(img)
return img
@preserve_shape
def _brightness_contrast_adjust_uint(img, alpha=1, beta=0, beta_by_max=False):
dtype = np.dtype("uint8")
max_value = MAX_VALUES_BY_DTYPE[dtype]
lut = np.arange(0, max_value + 1).astype("float32")
if alpha != 1:
lut *= alpha
if beta != 0:
if beta_by_max:
lut += beta * max_value
else:
lut += (alpha * beta) * np.mean(img)
lut = np.clip(lut, 0, max_value).astype(dtype)
img = cv2.LUT(img, lut)
return img
def brightness_contrast_adjust(img, alpha=1, beta=0, beta_by_max=False):
if img.dtype == np.uint8:
return _brightness_contrast_adjust_uint(img, alpha, beta, beta_by_max)
return _brightness_contrast_adjust_non_uint(img, alpha, beta, beta_by_max)
@clipped
def iso_noise(image, color_shift=0.05, intensity=0.5, random_state=None, **kwargs):
"""
Apply poisson noise to image to simulate camera sensor noise.
Args:
image (numpy.ndarray): Input image, currently, only RGB, uint8 images are supported.
color_shift (float):
intensity (float): Multiplication factor for noise values. Values of ~0.5 are produce noticeable,
yet acceptable level of noise.
random_state:
**kwargs:
Returns:
numpy.ndarray: Noised image
"""
if image.dtype != np.uint8:
raise TypeError("Image must have uint8 channel type")
if not is_rgb_image(image):
raise TypeError("Image must be RGB")
one_over_255 = float(1.0 / 255.0)
image = np.multiply(image, one_over_255, dtype=np.float32)
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
_, stddev = cv2.meanStdDev(hls)
luminance_noise = random_utils.poisson(stddev[1] * intensity * 255, size=hls.shape[:2], random_state=random_state)
color_noise = random_utils.normal(0, color_shift * 360 * intensity, size=hls.shape[:2], random_state=random_state)
hue = hls[..., 0]
hue += color_noise
hue[hue < 0] += 360
hue[hue > 360] -= 360
luminance = hls[..., 1]
luminance += (luminance_noise / 255) * (1.0 - luminance)
image = cv2.cvtColor(hls, cv2.COLOR_HLS2RGB) * 255
return image.astype(np.uint8)
def to_gray(img):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
def gray_to_rgb(img):
return cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
@preserve_shape
def downscale(img, scale, down_interpolation=cv2.INTER_AREA, up_interpolation=cv2.INTER_LINEAR):
h, w = img.shape[:2]
need_cast = (
up_interpolation != cv2.INTER_NEAREST or down_interpolation != cv2.INTER_NEAREST
) and img.dtype == np.uint8
if need_cast:
img = to_float(img)
downscaled = cv2.resize(img, None, fx=scale, fy=scale, interpolation=down_interpolation)
upscaled = cv2.resize(downscaled, (w, h), interpolation=up_interpolation)
if need_cast:
upscaled = from_float(np.clip(upscaled, 0, 1), dtype=np.dtype("uint8"))
return upscaled
def to_float(img, max_value=None):
if max_value is None:
try:
max_value = MAX_VALUES_BY_DTYPE[img.dtype]
except KeyError:
raise RuntimeError(
"Can't infer the maximum value for dtype {}. You need to specify the maximum value manually by "
"passing the max_value argument".format(img.dtype)
)
return img.astype("float32") / max_value
def from_float(img, dtype, max_value=None):
if max_value is None:
try:
max_value = MAX_VALUES_BY_DTYPE[dtype]
except KeyError:
raise RuntimeError(
"Can't infer the maximum value for dtype {}. You need to specify the maximum value manually by "
"passing the max_value argument".format(dtype)
)
return (img * max_value).astype(dtype)
def noop(input_obj, **params): # skipcq: PYL-W0613
return input_obj
def swap_tiles_on_image(image, tiles):
"""
Swap tiles on image.
Args:
image (np.ndarray): Input image.
tiles (np.ndarray): array of tuples(
current_left_up_corner_row, current_left_up_corner_col,
old_left_up_corner_row, old_left_up_corner_col,
height_tile, width_tile)
Returns:
np.ndarray: Output image.
"""
new_image = image.copy()
for tile in tiles:
new_image[tile[0] : tile[0] + tile[4], tile[1] : tile[1] + tile[5]] = image[
tile[2] : tile[2] + tile[4], tile[3] : tile[3] + tile[5]
]
return new_image
@clipped
def _multiply_uint8(img, multiplier):
img = img.astype(np.float32)
return np.multiply(img, multiplier)
@preserve_shape
def _multiply_uint8_optimized(img, multiplier):
if is_grayscale_image(img) or len(multiplier) == 1:
multiplier = multiplier[0]
lut = np.arange(0, 256, dtype=np.float32)
lut *= multiplier
lut = clip(lut, np.uint8, MAX_VALUES_BY_DTYPE[img.dtype])
func = _maybe_process_in_chunks(cv2.LUT, lut=lut)
return func(img)
channels = img.shape[-1]
lut = [np.arange(0, 256, dtype=np.float32)] * channels
lut = np.stack(lut, axis=-1)
lut *= multiplier
lut = clip(lut, np.uint8, MAX_VALUES_BY_DTYPE[img.dtype])
images = []
for i in range(channels):
func = _maybe_process_in_chunks(cv2.LUT, lut=lut[:, i])
images.append(func(img[:, :, i]))
return np.stack(images, axis=-1)
@clipped
def _multiply_non_uint8(img, multiplier):
return img * multiplier
def multiply(img, multiplier):
"""
Args:
img (numpy.ndarray): Image.
multiplier (numpy.ndarray): Multiplier coefficient.
Returns:
numpy.ndarray: Image multiplied by `multiplier` coefficient.
"""
if img.dtype == np.uint8:
if len(multiplier.shape) == 1:
return _multiply_uint8_optimized(img, multiplier)
return _multiply_uint8(img, multiplier)
return _multiply_non_uint8(img, multiplier)
def bbox_from_mask(mask):
"""Create bounding box from binary mask (fast version)
Args:
mask (numpy.ndarray): binary mask.
Returns:
tuple: A bounding box tuple `(x_min, y_min, x_max, y_max)`.
"""
rows = np.any(mask, axis=1)
if not rows.any():
return -1, -1, -1, -1
cols = np.any(mask, axis=0)
y_min, y_max = np.where(rows)[0][[0, -1]]
x_min, x_max = np.where(cols)[0][[0, -1]]
return x_min, y_min, x_max + 1, y_max + 1
def mask_from_bbox(img, bbox):
"""Create binary mask from bounding box
Args:
img (numpy.ndarray): input image
bbox: A bounding box tuple `(x_min, y_min, x_max, y_max)`
Returns:
mask (numpy.ndarray): binary mask
"""
mask = np.zeros(img.shape[:2], dtype=np.uint8)
x_min, y_min, x_max, y_max = bbox
mask[y_min:y_max, x_min:x_max] = 1
return mask
def fancy_pca(img, alpha=0.1):
"""Perform 'Fancy PCA' augmentation from:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Args:
img (numpy.ndarray): numpy array with (h, w, rgb) shape, as ints between 0-255
alpha (float): how much to perturb/scale the eigen vecs and vals
the paper used std=0.1
Returns:
numpy.ndarray: numpy image-like array as uint8 range(0, 255)
"""
if not is_rgb_image(img) or img.dtype != np.uint8:
raise TypeError("Image must be RGB image in uint8 format.")
orig_img = img.astype(float).copy()
img = img / 255.0 # rescale to 0 to 1 range
# flatten image to columns of RGB
img_rs = img.reshape(-1, 3)
# img_rs shape (640000, 3)
# center mean
img_centered = img_rs - np.mean(img_rs, axis=0)
# paper says 3x3 covariance matrix
img_cov = np.cov(img_centered, rowvar=False)
# eigen values and eigen vectors
eig_vals, eig_vecs = np.linalg.eigh(img_cov)
# sort values and vector
sort_perm = eig_vals[::-1].argsort()
eig_vals[::-1].sort()
eig_vecs = eig_vecs[:, sort_perm]
# get [p1, p2, p3]
m1 = np.column_stack((eig_vecs))
# get 3x1 matrix of eigen values multiplied by random variable draw from normal
# distribution with mean of 0 and standard deviation of 0.1
m2 = np.zeros((3, 1))
# according to the paper alpha should only be draw once per augmentation (not once per channel)
# alpha = np.random.normal(0, alpha_std)
# broad cast to speed things up
m2[:, 0] = alpha * eig_vals[:]
# this is the vector that we're going to add to each pixel in a moment
add_vect = np.matrix(m1) * np.matrix(m2)
for idx in range(3): # RGB
orig_img[..., idx] += add_vect[idx] * 255
# for image processing it was found that working with float 0.0 to 1.0
# was easier than integers between 0-255
# orig_img /= 255.0
orig_img = np.clip(orig_img, 0.0, 255.0)
# orig_img *= 255
orig_img = orig_img.astype(np.uint8)
return orig_img
def _adjust_brightness_torchvision_uint8(img, factor):
lut = np.arange(0, 256) * factor
lut = np.clip(lut, 0, 255).astype(np.uint8)
return cv2.LUT(img, lut)
@preserve_shape
def adjust_brightness_torchvision(img, factor):
if factor == 0:
return np.zeros_like(img)
elif factor == 1:
return img
if img.dtype == np.uint8:
return _adjust_brightness_torchvision_uint8(img, factor)
return clip(img * factor, img.dtype, MAX_VALUES_BY_DTYPE[img.dtype])
def _adjust_contrast_torchvision_uint8(img, factor, mean):
lut = np.arange(0, 256) * factor
lut = lut + mean * (1 - factor)
lut = clip(lut, img.dtype, 255)
return cv2.LUT(img, lut)
@preserve_shape
def adjust_contrast_torchvision(img, factor):
if factor == 1:
return img
if is_grayscale_image(img):
mean = img.mean()
else:
mean = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).mean()
if factor == 0:
if img.dtype != np.float32:
mean = int(mean + 0.5)
return np.full_like(img, mean, dtype=img.dtype)
if img.dtype == np.uint8:
return _adjust_contrast_torchvision_uint8(img, factor, mean)
return clip(
img.astype(np.float32) * factor + mean * (1 - factor),
img.dtype,
MAX_VALUES_BY_DTYPE[img.dtype],
)
@preserve_shape
def adjust_saturation_torchvision(img, factor, gamma=0):
if factor == 1:
return img
if is_grayscale_image(img):
gray = img
return gray
else:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
if factor == 0:
return gray
result = cv2.addWeighted(img, factor, gray, 1 - factor, gamma=gamma)
if img.dtype == np.uint8:
return result
# OpenCV does not clip values for float dtype
return clip(result, img.dtype, MAX_VALUES_BY_DTYPE[img.dtype])
def _adjust_hue_torchvision_uint8(img, factor):
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
lut = np.arange(0, 256, dtype=np.int16)
lut = np.mod(lut + 180 * factor, 180).astype(np.uint8)
img[..., 0] = cv2.LUT(img[..., 0], lut)
return cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
def adjust_hue_torchvision(img, factor):
if is_grayscale_image(img):
return img
if factor == 0:
return img
if img.dtype == np.uint8:
return _adjust_hue_torchvision_uint8(img, factor)
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
img[..., 0] = np.mod(img[..., 0] + factor * 360, 360)
return cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
@preserve_shape
def superpixels(
image: np.ndarray, n_segments: int, replace_samples: Sequence[bool], max_size: Optional[int], interpolation: int
) -> np.ndarray:
if not np.any(replace_samples):
return image
orig_shape = image.shape
if max_size is not None:
size = max(image.shape[:2])
if size > max_size:
scale = max_size / size
height, width = image.shape[:2]
new_height, new_width = int(height * scale), int(width * scale)
resize_fn = _maybe_process_in_chunks(cv2.resize, dsize=(new_width, new_height), interpolation=interpolation)
image = resize_fn(image)
segments = skimage.segmentation.slic(
image, n_segments=n_segments, compactness=10, channel_axis=-1 if image.ndim > 2 else None
)
min_value = 0
max_value = MAX_VALUES_BY_DTYPE[image.dtype]
image = np.copy(image)
if image.ndim == 2:
image = image.reshape(*image.shape, 1)
nb_channels = image.shape[2]
for c in range(nb_channels):
# segments+1 here because otherwise regionprops always misses the last label
regions = skimage.measure.regionprops(segments + 1, intensity_image=image[..., c])
for ridx, region in enumerate(regions):
# with mod here, because slic can sometimes create more superpixel than requested.
# replace_samples then does not have enough values, so we just start over with the first one again.
if replace_samples[ridx % len(replace_samples)]:
mean_intensity = region.mean_intensity
image_sp_c = image[..., c]
if image_sp_c.dtype.kind in ["i", "u", "b"]:
# After rounding the value can end up slightly outside of the value_range. Hence, we need to clip.
# We do clip via min(max(...)) instead of np.clip because
# the latter one does not seem to keep dtypes for dtypes with large itemsizes (e.g. uint64).
value: Union[int, float]
value = int(np.round(mean_intensity))
value = min(max(value, min_value), max_value)
else:
value = mean_intensity
image_sp_c[segments == ridx] = value
if orig_shape != image.shape:
resize_fn = _maybe_process_in_chunks(
cv2.resize, dsize=(orig_shape[1], orig_shape[0]), interpolation=interpolation
)
image = resize_fn(image)
return image
@clipped
def add_weighted(img1, alpha, img2, beta):
return img1.astype(float) * alpha + img2.astype(float) * beta
@clipped
@preserve_shape
def unsharp_mask(image: np.ndarray, ksize: int, sigma: float = 0.0, alpha: float = 0.2, threshold: int = 10):
blur_fn = _maybe_process_in_chunks(cv2.GaussianBlur, ksize=(ksize, ksize), sigmaX=sigma)
input_dtype = image.dtype
if input_dtype == np.uint8:
image = to_float(image)
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for UnsharpMask augmentation".format(input_dtype))
blur = blur_fn(image)
residual = image - blur
# Do not sharpen noise
mask = np.abs(residual) * 255 > threshold
mask = mask.astype("float32")
sharp = image + alpha * residual
# Avoid color noise artefacts.
sharp = np.clip(sharp, 0, 1)
soft_mask = blur_fn(mask)
output = soft_mask * sharp + (1 - soft_mask) * image
return from_float(output, dtype=input_dtype)
@preserve_shape
def pixel_dropout(image: np.ndarray, drop_mask: np.ndarray, drop_value: Union[float, Sequence[float]]) -> np.ndarray:
if isinstance(drop_value, (int, float)) and drop_value == 0:
drop_values = np.zeros_like(image)
else:
drop_values = np.full_like(image, drop_value) # type: ignore
return np.where(drop_mask, drop_values, image)
@clipped
@preserve_shape
def spatter(
img: np.ndarray,
non_mud: Optional[np.ndarray],
mud: Optional[np.ndarray],
rain: Optional[np.ndarray],
mode: str,
) -> np.ndarray:
non_rgb_warning(img)
coef = MAX_VALUES_BY_DTYPE[img.dtype]
img = img.astype(np.float32) * (1 / coef)
if mode == "rain":
assert rain is not None
img = img + rain
elif mode == "mud":
assert non_mud is not None and mud is not None
img = img * non_mud + mud
else:
raise ValueError("Unsupported spatter mode: " + str(mode))
return img * 255
|