File size: 3,058 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Use `Any` as the return type to avoid mypy problems with Union data types,
# because numpy can return single number and ndarray

import random as py_random
from typing import Any, Optional, Sequence, Type, Union

import numpy as np

from .core.transforms_interface import NumType

IntNumType = Union[int, np.ndarray]
Size = Union[int, Sequence[int]]


def get_random_state() -> np.random.RandomState:
    return np.random.RandomState(py_random.randint(0, (1 << 32) - 1))


def uniform(

    low: NumType = 0.0,

    high: NumType = 1.0,

    size: Optional[Size] = None,

    random_state: Optional[np.random.RandomState] = None,

) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.uniform(low, high, size)


def rand(d0: NumType, d1: NumType, *more, random_state: Optional[np.random.RandomState] = None, **kwargs) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.rand(d0, d1, *more, **kwargs)  # type: ignore


def randn(d0: NumType, d1: NumType, *more, random_state: Optional[np.random.RandomState] = None, **kwargs) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.randn(d0, d1, *more, **kwargs)  # type: ignore


def normal(

    loc: NumType = 0.0,

    scale: NumType = 1.0,

    size: Optional[Size] = None,

    random_state: Optional[np.random.RandomState] = None,

) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.normal(loc, scale, size)


def poisson(

    lam: NumType = 1.0, size: Optional[Size] = None, random_state: Optional[np.random.RandomState] = None

) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.poisson(lam, size)


def permutation(

    x: Union[int, Sequence[float], np.ndarray], random_state: Optional[np.random.RandomState] = None

) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.permutation(x)


def randint(

    low: IntNumType,

    high: Optional[IntNumType] = None,

    size: Optional[Size] = None,

    dtype: Type = np.int32,

    random_state: Optional[np.random.RandomState] = None,

) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.randint(low, high, size, dtype)


def random(size: Optional[NumType] = None, random_state: Optional[np.random.RandomState] = None) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.random(size)  # type: ignore


def choice(

    a: NumType,

    size: Optional[Size] = None,

    replace: bool = True,

    p: Optional[Union[Sequence[float], np.ndarray]] = None,

    random_state: Optional[np.random.RandomState] = None,

) -> Any:
    if random_state is None:
        random_state = get_random_state()
    return random_state.choice(a, size, replace, p)  # type: ignore