File size: 28,231 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
""" ConvNeXt



Paper: `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf



Original code and weights from https://github.com/facebookresearch/ConvNeXt, original copyright below



Model defs atto, femto, pico, nano and _ols / _hnf variants are timm specific.



Modifications and additions for timm hacked together by / Copyright 2022, Ross Wightman

"""
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the MIT license
from collections import OrderedDict
from functools import partial

import torch
import torch.nn as nn

from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import named_apply, build_model_with_cfg, checkpoint_seq
from .layers import trunc_normal_, SelectAdaptivePool2d, DropPath, ConvMlp, Mlp, LayerNorm2d, LayerNorm, \
    create_conv2d, get_act_layer, make_divisible, to_ntuple
from .registry import register_model


__all__ = ['ConvNeXt']  # model_registry will add each entrypoint fn to this


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = dict(
    # timm specific variants
    convnext_atto=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_d2-01bb0f51.pth',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    convnext_atto_ols=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_atto_ols_a2-78d1c8f3.pth',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    convnext_femto=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_d1-d71d5b4c.pth',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    convnext_femto_ols=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_femto_ols_d1-246bf2ed.pth',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    convnext_pico=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_d1-10ad7f0d.pth',
        test_input_size=(3, 288, 288), test_crop_pct=0.95),
    convnext_pico_ols=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_pico_ols_d1-611f0ca7.pth',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_nano=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_d1h-7eb4bdea.pth',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_nano_ols=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_nano_ols_d1h-ae424a9a.pth',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_tiny_hnf=_cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/convnext_tiny_hnf_a2h-ab7e9df2.pth',
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),

    convnext_tiny=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_small=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_base=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_large=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
        test_input_size=(3, 288, 288), test_crop_pct=1.0),

    convnext_tiny_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_224.pth',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_small_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_224.pth',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_base_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_large_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),
    convnext_xlarge_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth',
        test_input_size=(3, 288, 288), test_crop_pct=1.0),

    convnext_tiny_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_1k_384.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    convnext_small_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    convnext_base_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    convnext_large_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),
    convnext_xlarge_384_in22ft1k=_cfg(
        url='https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0),

    convnext_tiny_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", num_classes=21841),
    convnext_small_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", num_classes=21841),
    convnext_base_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", num_classes=21841),
    convnext_large_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", num_classes=21841),
    convnext_xlarge_in22k=_cfg(
        url="https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", num_classes=21841),
)


class ConvNeXtBlock(nn.Module):
    """ ConvNeXt Block

    There are two equivalent implementations:

      (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)

      (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back



    Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate

    choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear

    is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.



    Args:

        in_chs (int): Number of input channels.

        drop_path (float): Stochastic depth rate. Default: 0.0

        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.

    """

    def __init__(

            self,

            in_chs,

            out_chs=None,

            kernel_size=7,

            stride=1,

            dilation=1,

            mlp_ratio=4,

            conv_mlp=False,

            conv_bias=True,

            ls_init_value=1e-6,

            act_layer='gelu',

            norm_layer=None,

            drop_path=0.,

    ):
        super().__init__()
        out_chs = out_chs or in_chs
        act_layer = get_act_layer(act_layer)
        if not norm_layer:
            norm_layer = LayerNorm2d if conv_mlp else LayerNorm
        mlp_layer = ConvMlp if conv_mlp else Mlp
        self.use_conv_mlp = conv_mlp

        self.conv_dw = create_conv2d(
            in_chs, out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, depthwise=True, bias=conv_bias)
        self.norm = norm_layer(out_chs)
        self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.conv_dw(x)
        if self.use_conv_mlp:
            x = self.norm(x)
            x = self.mlp(x)
        else:
            x = x.permute(0, 2, 3, 1)
            x = self.norm(x)
            x = self.mlp(x)
            x = x.permute(0, 3, 1, 2)
        if self.gamma is not None:
            x = x.mul(self.gamma.reshape(1, -1, 1, 1))

        x = self.drop_path(x) + shortcut
        return x


class ConvNeXtStage(nn.Module):

    def __init__(

            self,

            in_chs,

            out_chs,

            kernel_size=7,

            stride=2,

            depth=2,

            dilation=(1, 1),

            drop_path_rates=None,

            ls_init_value=1.0,

            conv_mlp=False,

            conv_bias=True,

            act_layer='gelu',

            norm_layer=None,

            norm_layer_cl=None

    ):
        super().__init__()
        self.grad_checkpointing = False

        if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
            ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
            pad = 'same' if dilation[1] > 1 else 0  # same padding needed if dilation used
            self.downsample = nn.Sequential(
                norm_layer(in_chs),
                create_conv2d(
                    in_chs, out_chs, kernel_size=ds_ks, stride=stride,
                    dilation=dilation[0], padding=pad, bias=conv_bias),
            )
            in_chs = out_chs
        else:
            self.downsample = nn.Identity()

        drop_path_rates = drop_path_rates or [0.] * depth
        stage_blocks = []
        for i in range(depth):
            stage_blocks.append(ConvNeXtBlock(
                in_chs=in_chs,
                out_chs=out_chs,
                kernel_size=kernel_size,
                dilation=dilation[1],
                drop_path=drop_path_rates[i],
                ls_init_value=ls_init_value,
                conv_mlp=conv_mlp,
                conv_bias=conv_bias,
                act_layer=act_layer,
                norm_layer=norm_layer if conv_mlp else norm_layer_cl
            ))
            in_chs = out_chs
        self.blocks = nn.Sequential(*stage_blocks)

    def forward(self, x):
        x = self.downsample(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        return x


class ConvNeXt(nn.Module):
    r""" ConvNeXt

        A PyTorch impl of : `A ConvNet for the 2020s`  - https://arxiv.org/pdf/2201.03545.pdf



    Args:

        in_chans (int): Number of input image channels. Default: 3

        num_classes (int): Number of classes for classification head. Default: 1000

        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]

        dims (tuple(int)): Feature dimension at each stage. Default: [96, 192, 384, 768]

        drop_rate (float): Head dropout rate

        drop_path_rate (float): Stochastic depth rate. Default: 0.

        ls_init_value (float): Init value for Layer Scale. Default: 1e-6.

        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.

    """

    def __init__(

            self,

            in_chans=3,

            num_classes=1000,

            global_pool='avg',

            output_stride=32,

            depths=(3, 3, 9, 3),

            dims=(96, 192, 384, 768),

            kernel_sizes=7,

            ls_init_value=1e-6,

            stem_type='patch',

            patch_size=4,

            head_init_scale=1.,

            head_norm_first=False,

            conv_mlp=False,

            conv_bias=True,

            act_layer='gelu',

            norm_layer=None,

            drop_rate=0.,

            drop_path_rate=0.,

    ):
        super().__init__()
        assert output_stride in (8, 16, 32)
        kernel_sizes = to_ntuple(4)(kernel_sizes)
        if norm_layer is None:
            norm_layer = LayerNorm2d
            norm_layer_cl = norm_layer if conv_mlp else LayerNorm
        else:
            assert conv_mlp,\
                'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input'
            norm_layer_cl = norm_layer

        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.feature_info = []

        assert stem_type in ('patch', 'overlap', 'overlap_tiered')
        if stem_type == 'patch':
            # NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias),
                norm_layer(dims[0])
            )
            stem_stride = patch_size
        else:
            mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0]
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias),
                nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias),
                norm_layer(dims[0]),
            )
            stem_stride = 4

        self.stages = nn.Sequential()
        dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
        stages = []
        prev_chs = dims[0]
        curr_stride = stem_stride
        dilation = 1
        # 4 feature resolution stages, each consisting of multiple residual blocks
        for i in range(4):
            stride = 2 if curr_stride == 2 or i > 0 else 1
            if curr_stride >= output_stride and stride > 1:
                dilation *= stride
                stride = 1
            curr_stride *= stride
            first_dilation = 1 if dilation in (1, 2) else 2
            out_chs = dims[i]
            stages.append(ConvNeXtStage(
                prev_chs,
                out_chs,
                kernel_size=kernel_sizes[i],
                stride=stride,
                dilation=(first_dilation, dilation),
                depth=depths[i],
                drop_path_rates=dp_rates[i],
                ls_init_value=ls_init_value,
                conv_mlp=conv_mlp,
                conv_bias=conv_bias,
                act_layer=act_layer,
                norm_layer=norm_layer,
                norm_layer_cl=norm_layer_cl
            ))
            prev_chs = out_chs
            # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
            self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')]
        self.stages = nn.Sequential(*stages)
        self.num_features = prev_chs

        # if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
        # otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
        self.norm_pre = norm_layer(self.num_features) if head_norm_first else nn.Identity()
        self.head = nn.Sequential(OrderedDict([
                ('global_pool', SelectAdaptivePool2d(pool_type=global_pool)),
                ('norm', nn.Identity() if head_norm_first else norm_layer(self.num_features)),
                ('flatten', nn.Flatten(1) if global_pool else nn.Identity()),
                ('drop', nn.Dropout(self.drop_rate)),
                ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())]))

        named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^stem',
            blocks=r'^stages\.(\d+)' if coarse else [
                (r'^stages\.(\d+)\.downsample', (0,)),  # blocks
                (r'^stages\.(\d+)\.blocks\.(\d+)', None),
                (r'^norm_pre', (99999,))
            ]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        for s in self.stages:
            s.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes=0, global_pool=None):
        if global_pool is not None:
            self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
            self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
        self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm_pre(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        # NOTE nn.Sequential in head broken down since can't call head[:-1](x) in torchscript :(
        x = self.head.global_pool(x)
        x = self.head.norm(x)
        x = self.head.flatten(x)
        x = self.head.drop(x)
        return x if pre_logits else self.head.fc(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _init_weights(module, name=None, head_init_scale=1.0):
    if isinstance(module, nn.Conv2d):
        trunc_normal_(module.weight, std=.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=.02)
        nn.init.zeros_(module.bias)
        if name and 'head.' in name:
            module.weight.data.mul_(head_init_scale)
            module.bias.data.mul_(head_init_scale)


def checkpoint_filter_fn(state_dict, model):
    """ Remap FB checkpoints -> timm """
    if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict:
        return state_dict  # non-FB checkpoint
    if 'model' in state_dict:
        state_dict = state_dict['model']
    out_dict = {}
    import re
    for k, v in state_dict.items():
        k = k.replace('downsample_layers.0.', 'stem.')
        k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k)
        k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k)
        k = k.replace('dwconv', 'conv_dw')
        k = k.replace('pwconv', 'mlp.fc')
        k = k.replace('head.', 'head.fc.')
        if k.startswith('norm.'):
            k = k.replace('norm', 'head.norm')
        if v.ndim == 2 and 'head' not in k:
            model_shape = model.state_dict()[k].shape
            v = v.reshape(model_shape)
        out_dict[k] = v
    return out_dict


def _create_convnext(variant, pretrained=False, **kwargs):
    model = build_model_with_cfg(
        ConvNeXt, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
        **kwargs)
    return model


@register_model
def convnext_atto(pretrained=False, **kwargs):
    # timm femto variant (NOTE: still tweaking depths, will vary between 3-4M param, current is 3.7M
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, **kwargs)
    model = _create_convnext('convnext_atto', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_atto_ols(pretrained=False, **kwargs):
    # timm femto variant with overlapping 3x3 conv stem, wider than non-ols femto above, current param count 3.7M
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(40, 80, 160, 320), conv_mlp=True, stem_type='overlap_tiered', **kwargs)
    model = _create_convnext('convnext_atto_ols', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_femto(pretrained=False, **kwargs):
    # timm femto variant
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, **kwargs)
    model = _create_convnext('convnext_femto', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_femto_ols(pretrained=False, **kwargs):
    # timm femto variant
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(48, 96, 192, 384), conv_mlp=True, stem_type='overlap_tiered', **kwargs)
    model = _create_convnext('convnext_femto_ols', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_pico(pretrained=False, **kwargs):
    # timm pico variant
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True, **kwargs)
    model = _create_convnext('convnext_pico', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_pico_ols(pretrained=False, **kwargs):
    # timm nano variant with overlapping 3x3 conv stem
    model_args = dict(
        depths=(2, 2, 6, 2), dims=(64, 128, 256, 512), conv_mlp=True,  stem_type='overlap_tiered', **kwargs)
    model = _create_convnext('convnext_pico_ols', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_nano(pretrained=False, **kwargs):
    # timm nano variant with standard stem and head
    model_args = dict(
        depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, **kwargs)
    model = _create_convnext('convnext_nano', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_nano_ols(pretrained=False, **kwargs):
    # experimental nano variant with overlapping conv stem
    model_args = dict(
        depths=(2, 2, 8, 2), dims=(80, 160, 320, 640), conv_mlp=True, stem_type='overlap', **kwargs)
    model = _create_convnext('convnext_nano_ols', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_tiny_hnf(pretrained=False, **kwargs):
    # experimental tiny variant with norm before pooling in head (head norm first)
    model_args = dict(
        depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), head_norm_first=True, conv_mlp=True, **kwargs)
    model = _create_convnext('convnext_tiny_hnf', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_tiny(pretrained=False, **kwargs):
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
    model = _create_convnext('convnext_tiny', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_small(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
    model = _create_convnext('convnext_small', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_tiny_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
    model = _create_convnext('convnext_tiny_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_small_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
    model = _create_convnext('convnext_small_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_xlarge_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
    model = _create_convnext('convnext_xlarge_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_tiny_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
    model = _create_convnext('convnext_tiny_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_small_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
    model = _create_convnext('convnext_small_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_xlarge_384_in22ft1k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
    model = _create_convnext('convnext_xlarge_384_in22ft1k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_tiny_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), **kwargs)
    model = _create_convnext('convnext_tiny_in22k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_small_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
    model = _create_convnext('convnext_small_in22k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_base_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    model = _create_convnext('convnext_base_in22k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_large_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    model = _create_convnext('convnext_large_in22k', pretrained=pretrained, **model_args)
    return model


@register_model
def convnext_xlarge_in22k(pretrained=False, **kwargs):
    model_args = dict(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
    model = _create_convnext('convnext_xlarge_in22k', pretrained=pretrained, **model_args)
    return model