Spaces:
Running
Running
File size: 19,426 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
""" Deep Layer Aggregation and DLA w/ Res2Net
DLA original adapted from Official Pytorch impl at:
DLA Paper: `Deep Layer Aggregation` - https://arxiv.org/abs/1707.06484
Res2Net additions from: https://github.com/gasvn/Res2Net/
Res2Net Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169
"""
import math
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import create_classifier
from .registry import register_model
__all__ = ['DLA']
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'base_layer.0', 'classifier': 'fc',
**kwargs
}
default_cfgs = {
'dla34': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla34-2b83ff04.pth'),
'dla46_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46_c-9b68d685.pth'),
'dla46x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla46x_c-6bc5b5c8.pth'),
'dla60x_c': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x_c-a38e054a.pth'),
'dla60': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60-9e91bd4d.pth'),
'dla60x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla60x-6818f6bb.pth'),
'dla102': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102-21f57b54.pth'),
'dla102x': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x-7ec0aa2a.pth'),
'dla102x2': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla102x2-ac4239c4.pth'),
'dla169': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dla169-7c767967.pth'),
'dla60_res2net': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth'),
'dla60_res2next': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth'),
}
class DlaBasic(nn.Module):
"""DLA Basic"""
def __init__(self, inplanes, planes, stride=1, dilation=1, **_):
super(DlaBasic, self).__init__()
self.conv1 = nn.Conv2d(
inplanes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=1, padding=dilation, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes)
self.stride = stride
def forward(self, x, shortcut=None, children: Optional[List[torch.Tensor]] = None):
if shortcut is None:
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += shortcut
out = self.relu(out)
return out
class DlaBottleneck(nn.Module):
"""DLA/DLA-X Bottleneck"""
expansion = 2
def __init__(self, inplanes, outplanes, stride=1, dilation=1, cardinality=1, base_width=64):
super(DlaBottleneck, self).__init__()
self.stride = stride
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
mid_planes = mid_planes // self.expansion
self.conv1 = nn.Conv2d(inplanes, mid_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(mid_planes)
self.conv2 = nn.Conv2d(
mid_planes, mid_planes, kernel_size=3, stride=stride, padding=dilation,
bias=False, dilation=dilation, groups=cardinality)
self.bn2 = nn.BatchNorm2d(mid_planes)
self.conv3 = nn.Conv2d(mid_planes, outplanes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(outplanes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
if shortcut is None:
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += shortcut
out = self.relu(out)
return out
class DlaBottle2neck(nn.Module):
""" Res2Net/Res2NeXT DLA Bottleneck
Adapted from https://github.com/gasvn/Res2Net/blob/master/dla.py
"""
expansion = 2
def __init__(self, inplanes, outplanes, stride=1, dilation=1, scale=4, cardinality=8, base_width=4):
super(DlaBottle2neck, self).__init__()
self.is_first = stride > 1
self.scale = scale
mid_planes = int(math.floor(outplanes * (base_width / 64)) * cardinality)
mid_planes = mid_planes // self.expansion
self.width = mid_planes
self.conv1 = nn.Conv2d(inplanes, mid_planes * scale, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(mid_planes * scale)
num_scale_convs = max(1, scale - 1)
convs = []
bns = []
for _ in range(num_scale_convs):
convs.append(nn.Conv2d(
mid_planes, mid_planes, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, groups=cardinality, bias=False))
bns.append(nn.BatchNorm2d(mid_planes))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
self.pool = nn.AvgPool2d(kernel_size=3, stride=stride, padding=1) if self.is_first else None
self.conv3 = nn.Conv2d(mid_planes * scale, outplanes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(outplanes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
if shortcut is None:
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
spx = torch.split(out, self.width, 1)
spo = []
sp = spx[0] # redundant, for torchscript
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
if i == 0 or self.is_first:
sp = spx[i]
else:
sp = sp + spx[i]
sp = conv(sp)
sp = bn(sp)
sp = self.relu(sp)
spo.append(sp)
if self.scale > 1:
if self.pool is not None: # self.is_first == True, None check for torchscript
spo.append(self.pool(spx[-1]))
else:
spo.append(spx[-1])
out = torch.cat(spo, 1)
out = self.conv3(out)
out = self.bn3(out)
out += shortcut
out = self.relu(out)
return out
class DlaRoot(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, shortcut):
super(DlaRoot, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.shortcut = shortcut
def forward(self, x_children: List[torch.Tensor]):
x = self.conv(torch.cat(x_children, 1))
x = self.bn(x)
if self.shortcut:
x += x_children[0]
x = self.relu(x)
return x
class DlaTree(nn.Module):
def __init__(
self, levels, block, in_channels, out_channels, stride=1, dilation=1, cardinality=1,
base_width=64, level_root=False, root_dim=0, root_kernel_size=1, root_shortcut=False):
super(DlaTree, self).__init__()
if root_dim == 0:
root_dim = 2 * out_channels
if level_root:
root_dim += in_channels
self.downsample = nn.MaxPool2d(stride, stride=stride) if stride > 1 else nn.Identity()
self.project = nn.Identity()
cargs = dict(dilation=dilation, cardinality=cardinality, base_width=base_width)
if levels == 1:
self.tree1 = block(in_channels, out_channels, stride, **cargs)
self.tree2 = block(out_channels, out_channels, 1, **cargs)
if in_channels != out_channels:
# NOTE the official impl/weights have project layers in levels > 1 case that are never
# used, I've moved the project layer here to avoid wasted params but old checkpoints will
# need strict=False while loading.
self.project = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channels))
self.root = DlaRoot(root_dim, out_channels, root_kernel_size, root_shortcut)
else:
cargs.update(dict(root_kernel_size=root_kernel_size, root_shortcut=root_shortcut))
self.tree1 = DlaTree(
levels - 1, block, in_channels, out_channels, stride, root_dim=0, **cargs)
self.tree2 = DlaTree(
levels - 1, block, out_channels, out_channels, root_dim=root_dim + out_channels, **cargs)
self.root = None
self.level_root = level_root
self.root_dim = root_dim
self.levels = levels
def forward(self, x, shortcut: Optional[torch.Tensor] = None, children: Optional[List[torch.Tensor]] = None):
if children is None:
children = []
bottom = self.downsample(x)
shortcut = self.project(bottom)
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, shortcut)
if self.root is not None: # levels == 1
x2 = self.tree2(x1)
x = self.root([x2, x1] + children)
else:
children.append(x1)
x = self.tree2(x1, None, children)
return x
class DLA(nn.Module):
def __init__(
self, levels, channels, output_stride=32, num_classes=1000, in_chans=3, global_pool='avg',
cardinality=1, base_width=64, block=DlaBottle2neck, shortcut_root=False, drop_rate=0.0):
super(DLA, self).__init__()
self.channels = channels
self.num_classes = num_classes
self.cardinality = cardinality
self.base_width = base_width
self.drop_rate = drop_rate
assert output_stride == 32 # FIXME support dilation
self.base_layer = nn.Sequential(
nn.Conv2d(in_chans, channels[0], kernel_size=7, stride=1, padding=3, bias=False),
nn.BatchNorm2d(channels[0]),
nn.ReLU(inplace=True))
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2)
cargs = dict(cardinality=cardinality, base_width=base_width, root_shortcut=shortcut_root)
self.level2 = DlaTree(levels[2], block, channels[1], channels[2], 2, level_root=False, **cargs)
self.level3 = DlaTree(levels[3], block, channels[2], channels[3], 2, level_root=True, **cargs)
self.level4 = DlaTree(levels[4], block, channels[3], channels[4], 2, level_root=True, **cargs)
self.level5 = DlaTree(levels[5], block, channels[4], channels[5], 2, level_root=True, **cargs)
self.feature_info = [
dict(num_chs=channels[0], reduction=1, module='level0'), # rare to have a meaningful stride 1 level
dict(num_chs=channels[1], reduction=2, module='level1'),
dict(num_chs=channels[2], reduction=4, module='level2'),
dict(num_chs=channels[3], reduction=8, module='level3'),
dict(num_chs=channels[4], reduction=16, module='level4'),
dict(num_chs=channels[5], reduction=32, module='level5'),
]
self.num_features = channels[-1]
self.global_pool, self.fc = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
modules = []
for i in range(convs):
modules.extend([
nn.Conv2d(
inplanes, planes, kernel_size=3, stride=stride if i == 0 else 1,
padding=dilation, bias=False, dilation=dilation),
nn.BatchNorm2d(planes),
nn.ReLU(inplace=True)])
inplanes = planes
return nn.Sequential(*modules)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^base_layer',
blocks=r'^level(\d+)' if coarse else [
# an unusual arch, this achieves somewhat more granularity without getting super messy
(r'^level(\d+)\.tree(\d+)', None),
(r'^level(\d+)\.root', (2,)),
(r'^level(\d+)', (1,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.fc = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
self.flatten = nn.Flatten(1) if global_pool else nn.Identity()
def forward_features(self, x):
x = self.base_layer(x)
x = self.level0(x)
x = self.level1(x)
x = self.level2(x)
x = self.level3(x)
x = self.level4(x)
x = self.level5(x)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
if pre_logits:
return x.flatten(1)
else:
x = self.fc(x)
return self.flatten(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_dla(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
DLA, variant, pretrained,
pretrained_strict=False,
feature_cfg=dict(out_indices=(1, 2, 3, 4, 5)),
**kwargs)
@register_model
def dla60_res2net(pretrained=False, **kwargs):
model_kwargs = dict(
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
block=DlaBottle2neck, cardinality=1, base_width=28, **kwargs)
return _create_dla('dla60_res2net', pretrained, **model_kwargs)
@register_model
def dla60_res2next(pretrained=False,**kwargs):
model_kwargs = dict(
levels=(1, 1, 1, 2, 3, 1), channels=(16, 32, 128, 256, 512, 1024),
block=DlaBottle2neck, cardinality=8, base_width=4, **kwargs)
return _create_dla('dla60_res2next', pretrained, **model_kwargs)
@register_model
def dla34(pretrained=False, **kwargs): # DLA-34
model_kwargs = dict(
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 128, 256, 512],
block=DlaBasic, **kwargs)
return _create_dla('dla34', pretrained, **model_kwargs)
@register_model
def dla46_c(pretrained=False, **kwargs): # DLA-46-C
model_kwargs = dict(
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256],
block=DlaBottleneck, **kwargs)
return _create_dla('dla46_c', pretrained, **model_kwargs)
@register_model
def dla46x_c(pretrained=False, **kwargs): # DLA-X-46-C
model_kwargs = dict(
levels=[1, 1, 1, 2, 2, 1], channels=[16, 32, 64, 64, 128, 256],
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
return _create_dla('dla46x_c', pretrained, **model_kwargs)
@register_model
def dla60x_c(pretrained=False, **kwargs): # DLA-X-60-C
model_kwargs = dict(
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 64, 64, 128, 256],
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
return _create_dla('dla60x_c', pretrained, **model_kwargs)
@register_model
def dla60(pretrained=False, **kwargs): # DLA-60
model_kwargs = dict(
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, **kwargs)
return _create_dla('dla60', pretrained, **model_kwargs)
@register_model
def dla60x(pretrained=False, **kwargs): # DLA-X-60
model_kwargs = dict(
levels=[1, 1, 1, 2, 3, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, cardinality=32, base_width=4, **kwargs)
return _create_dla('dla60x', pretrained, **model_kwargs)
@register_model
def dla102(pretrained=False, **kwargs): # DLA-102
model_kwargs = dict(
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, shortcut_root=True, **kwargs)
return _create_dla('dla102', pretrained, **model_kwargs)
@register_model
def dla102x(pretrained=False, **kwargs): # DLA-X-102
model_kwargs = dict(
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, cardinality=32, base_width=4, shortcut_root=True, **kwargs)
return _create_dla('dla102x', pretrained, **model_kwargs)
@register_model
def dla102x2(pretrained=False, **kwargs): # DLA-X-102 64
model_kwargs = dict(
levels=[1, 1, 1, 3, 4, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, cardinality=64, base_width=4, shortcut_root=True, **kwargs)
return _create_dla('dla102x2', pretrained, **model_kwargs)
@register_model
def dla169(pretrained=False, **kwargs): # DLA-169
model_kwargs = dict(
levels=[1, 1, 2, 3, 5, 1], channels=[16, 32, 128, 256, 512, 1024],
block=DlaBottleneck, shortcut_root=True, **kwargs)
return _create_dla('dla169', pretrained, **model_kwargs)
|