File size: 6,293 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import json
import logging
import os
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional, Union

import torch
from torch.hub import HASH_REGEX, download_url_to_file, urlparse

try:
    from torch.hub import get_dir
except ImportError:
    from torch.hub import _get_torch_home as get_dir

from custom_timm import __version__

try:
    from huggingface_hub import (create_repo, get_hf_file_metadata,
                                 hf_hub_download, hf_hub_url,
                                 repo_type_and_id_from_hf_id, upload_folder)
    from huggingface_hub.utils import EntryNotFoundError
    hf_hub_download = partial(hf_hub_download, library_name="timm", library_version=__version__)
    _has_hf_hub = True
except ImportError:
    hf_hub_download = None
    _has_hf_hub = False

_logger = logging.getLogger(__name__)


def get_cache_dir(child_dir=''):
    """

    Returns the location of the directory where models are cached (and creates it if necessary).

    """
    # Issue warning to move data if old env is set
    if os.getenv('TORCH_MODEL_ZOO'):
        _logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead')

    hub_dir = get_dir()
    child_dir = () if not child_dir else (child_dir,)
    model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir)
    os.makedirs(model_dir, exist_ok=True)
    return model_dir


def download_cached_file(url, check_hash=True, progress=False):
    parts = urlparse(url)
    filename = os.path.basename(parts.path)
    cached_file = os.path.join(get_cache_dir(), filename)
    if not os.path.exists(cached_file):
        _logger.info('Downloading: "{}" to {}\n'.format(url, cached_file))
        hash_prefix = None
        if check_hash:
            r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
            hash_prefix = r.group(1) if r else None
        download_url_to_file(url, cached_file, hash_prefix, progress=progress)
    return cached_file


def has_hf_hub(necessary=False):
    if not _has_hf_hub and necessary:
        # if no HF Hub module installed, and it is necessary to continue, raise error
        raise RuntimeError(
            'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
    return _has_hf_hub


def hf_split(hf_id):
    # FIXME I may change @ -> # and be parsed as fragment in a URI model name scheme
    rev_split = hf_id.split('@')
    assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.'
    hf_model_id = rev_split[0]
    hf_revision = rev_split[-1] if len(rev_split) > 1 else None
    return hf_model_id, hf_revision


def load_cfg_from_json(json_file: Union[str, os.PathLike]):
    with open(json_file, "r", encoding="utf-8") as reader:
        text = reader.read()
    return json.loads(text)


def _download_from_hf(model_id: str, filename: str):
    hf_model_id, hf_revision = hf_split(model_id)
    return hf_hub_download(hf_model_id, filename, revision=hf_revision)


def load_model_config_from_hf(model_id: str):
    assert has_hf_hub(True)
    cached_file = _download_from_hf(model_id, 'config.json')
    pretrained_cfg = load_cfg_from_json(cached_file)
    pretrained_cfg['hf_hub_id'] = model_id  # insert hf_hub id for pretrained weight load during model creation
    pretrained_cfg['source'] = 'hf-hub'
    model_name = pretrained_cfg.get('architecture')
    return pretrained_cfg, model_name


def load_state_dict_from_hf(model_id: str, filename: str = 'pytorch_model.bin'):
    assert has_hf_hub(True)
    cached_file = _download_from_hf(model_id, filename)
    state_dict = torch.load(cached_file, map_location='cpu')
    return state_dict


def save_for_hf(model, save_directory, model_config=None):
    assert has_hf_hub(True)
    model_config = model_config or {}
    save_directory = Path(save_directory)
    save_directory.mkdir(exist_ok=True, parents=True)

    weights_path = save_directory / 'pytorch_model.bin'
    torch.save(model.state_dict(), weights_path)

    config_path = save_directory / 'config.json'
    hf_config = model.pretrained_cfg
    hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes)
    hf_config['num_features'] = model_config.pop('num_features', model.num_features)
    hf_config['labels'] = model_config.pop('labels', [f"LABEL_{i}" for i in range(hf_config['num_classes'])])
    hf_config.update(model_config)

    with config_path.open('w') as f:
        json.dump(hf_config, f, indent=2)


def push_to_hf_hub(

    model,

    repo_id: str,

    commit_message: str ='Add model',

    token: Optional[str] = None,

    revision: Optional[str] = None,

    private: bool = False,

    create_pr: bool = False,

    model_config: Optional[dict] = None,

):
    # Create repo if doesn't exist yet
    repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True)

    # Infer complete repo_id from repo_url
    # Can be different from the input `repo_id` if repo_owner was implicit
    _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)
    repo_id = f"{repo_owner}/{repo_name}"

    # Check if README file already exist in repo
    try:
        get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
        has_readme = True
    except EntryNotFoundError:
        has_readme = False

    # Dump model and push to Hub
    with TemporaryDirectory() as tmpdir:
        # Save model weights and config.
        save_for_hf(model, tmpdir, model_config=model_config)

        # Add readme if does not exist
        if not has_readme:
            readme_path = Path(tmpdir) / "README.md"
            readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_id}'
            readme_path.write_text(readme_text)

        # Upload model and return
        return upload_folder(
            repo_id=repo_id,
            folder_path=tmpdir,
            revision=revision,
            create_pr=create_pr,
            commit_message=commit_message,
        )