File size: 29,860 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
""" MobileNet V3



A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl.



Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244



Hacked together by / Copyright 2019, Ross Wightman

"""
from functools import partial
from typing import List

import torch
import torch.nn as nn
import torch.nn.functional as F

from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from .efficientnet_blocks import SqueezeExcite
from .efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights,\
    round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT
from .features import FeatureInfo, FeatureHooks
from .helpers import build_model_with_cfg, pretrained_cfg_for_features, checkpoint_seq
from .layers import SelectAdaptivePool2d, Linear, create_conv2d, get_act_fn, get_norm_act_layer
from .registry import register_model

__all__ = ['MobileNetV3', 'MobileNetV3Features']


def _cfg(url='', **kwargs):
    return {
        'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bilinear',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'conv_stem', 'classifier': 'classifier',
        **kwargs
    }


default_cfgs = {
    'mobilenetv3_large_075': _cfg(url=''),
    'mobilenetv3_large_100': _cfg(
        interpolation='bicubic',
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'),
    'mobilenetv3_large_100_miil': _cfg(
        interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.),
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_1k_miil_78_0-66471c13.pth'),
    'mobilenetv3_large_100_miil_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_in21k_miil-d71cc17b.pth',
        interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), num_classes=11221),

    'mobilenetv3_small_050': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth',
        interpolation='bicubic'),
    'mobilenetv3_small_075': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth',
        interpolation='bicubic'),
    'mobilenetv3_small_100': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth',
        interpolation='bicubic'),

    'mobilenetv3_rw': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth',
        interpolation='bicubic'),

    'tf_mobilenetv3_large_075': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth',
        mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
    'tf_mobilenetv3_large_100': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth',
        mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
    'tf_mobilenetv3_large_minimal_100': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth',
        mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
    'tf_mobilenetv3_small_075': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth',
        mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
    'tf_mobilenetv3_small_100': _cfg(
        url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth',
        mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
    'tf_mobilenetv3_small_minimal_100': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
        mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),

    'fbnetv3_b': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth',
        test_input_size=(3, 256, 256), crop_pct=0.95),
    'fbnetv3_d': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth',
        test_input_size=(3, 256, 256), crop_pct=0.95),
    'fbnetv3_g': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth',
        input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95, pool_size=(8, 8)),

    "lcnet_035": _cfg(),
    "lcnet_050": _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth',
        interpolation='bicubic',
    ),
    "lcnet_075": _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth',
        interpolation='bicubic',
    ),
    "lcnet_100": _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth',
        interpolation='bicubic',
    ),
    "lcnet_150": _cfg(),
}


class MobileNetV3(nn.Module):
    """ MobiletNet-V3



    Based on my EfficientNet implementation and building blocks, this model utilizes the MobileNet-v3 specific

    'efficient head', where global pooling is done before the head convolution without a final batch-norm

    layer before the classifier.



    Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244



    Other architectures utilizing MobileNet-V3 efficient head that are supported by this impl include:

      * HardCoRe-NAS - https://arxiv.org/abs/2102.11646 (defn in hardcorenas.py uses this class)

      * FBNet-V3 - https://arxiv.org/abs/2006.02049

      * LCNet - https://arxiv.org/abs/2109.15099

    """

    def __init__(

            self, block_args, num_classes=1000, in_chans=3, stem_size=16, fix_stem=False, num_features=1280,

            head_bias=True, pad_type='', act_layer=None, norm_layer=None, se_layer=None, se_from_exp=True,

            round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'):
        super(MobileNetV3, self).__init__()
        act_layer = act_layer or nn.ReLU
        norm_layer = norm_layer or nn.BatchNorm2d
        norm_act_layer = get_norm_act_layer(norm_layer, act_layer)
        se_layer = se_layer or SqueezeExcite
        self.num_classes = num_classes
        self.num_features = num_features
        self.drop_rate = drop_rate
        self.grad_checkpointing = False

        # Stem
        if not fix_stem:
            stem_size = round_chs_fn(stem_size)
        self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type)
        self.bn1 = norm_act_layer(stem_size, inplace=True)

        # Middle stages (IR/ER/DS Blocks)
        builder = EfficientNetBuilder(
            output_stride=32, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp,
            act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, drop_path_rate=drop_path_rate)
        self.blocks = nn.Sequential(*builder(stem_size, block_args))
        self.feature_info = builder.features
        head_chs = builder.in_chs

        # Head + Pooling
        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        num_pooled_chs = head_chs * self.global_pool.feat_mult()
        self.conv_head = create_conv2d(num_pooled_chs, self.num_features, 1, padding=pad_type, bias=head_bias)
        self.act2 = act_layer(inplace=True)
        self.flatten = nn.Flatten(1) if global_pool else nn.Identity()  # don't flatten if pooling disabled
        self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        efficientnet_init_weights(self)

    def as_sequential(self):
        layers = [self.conv_stem, self.bn1]
        layers.extend(self.blocks)
        layers.extend([self.global_pool, self.conv_head, self.act2])
        layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier])
        return nn.Sequential(*layers)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^conv_stem|bn1',
            blocks=r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)'
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.classifier

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        # cannot meaningfully change pooling of efficient head after creation
        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.flatten = nn.Flatten(1) if global_pool else nn.Identity()  # don't flatten if pooling disabled
        self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.conv_stem(x)
        x = self.bn1(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x, flatten=True)
        else:
            x = self.blocks(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        x = self.global_pool(x)
        x = self.conv_head(x)
        x = self.act2(x)
        if pre_logits:
            return x.flatten(1)
        else:
            x = self.flatten(x)
            if self.drop_rate > 0.:
                x = F.dropout(x, p=self.drop_rate, training=self.training)
            return self.classifier(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


class MobileNetV3Features(nn.Module):
    """ MobileNetV3 Feature Extractor



    A work-in-progress feature extraction module for MobileNet-V3 to use as a backbone for segmentation

    and object detection models.

    """

    def __init__(

            self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3,

            stem_size=16, fix_stem=False, output_stride=32, pad_type='', round_chs_fn=round_channels,

            se_from_exp=True, act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.):
        super(MobileNetV3Features, self).__init__()
        act_layer = act_layer or nn.ReLU
        norm_layer = norm_layer or nn.BatchNorm2d
        se_layer = se_layer or SqueezeExcite
        self.drop_rate = drop_rate

        # Stem
        if not fix_stem:
            stem_size = round_chs_fn(stem_size)
        self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type)
        self.bn1 = norm_layer(stem_size)
        self.act1 = act_layer(inplace=True)

        # Middle stages (IR/ER/DS Blocks)
        builder = EfficientNetBuilder(
            output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp,
            act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer,
            drop_path_rate=drop_path_rate, feature_location=feature_location)
        self.blocks = nn.Sequential(*builder(stem_size, block_args))
        self.feature_info = FeatureInfo(builder.features, out_indices)
        self._stage_out_idx = {v['stage']: i for i, v in enumerate(self.feature_info) if i in out_indices}

        efficientnet_init_weights(self)

        # Register feature extraction hooks with FeatureHooks helper
        self.feature_hooks = None
        if feature_location != 'bottleneck':
            hooks = self.feature_info.get_dicts(keys=('module', 'hook_type'))
            self.feature_hooks = FeatureHooks(hooks, self.named_modules())

    def forward(self, x) -> List[torch.Tensor]:
        x = self.conv_stem(x)
        x = self.bn1(x)
        x = self.act1(x)
        if self.feature_hooks is None:
            features = []
            if 0 in self._stage_out_idx:
                features.append(x)  # add stem out
            for i, b in enumerate(self.blocks):
                x = b(x)
                if i + 1 in self._stage_out_idx:
                    features.append(x)
            return features
        else:
            self.blocks(x)
            out = self.feature_hooks.get_output(x.device)
            return list(out.values())


def _create_mnv3(variant, pretrained=False, **kwargs):
    features_only = False
    model_cls = MobileNetV3
    kwargs_filter = None
    if kwargs.pop('features_only', False):
        features_only = True
        kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool')
        model_cls = MobileNetV3Features
    model = build_model_with_cfg(
        model_cls, variant, pretrained,
        pretrained_strict=not features_only,
        kwargs_filter=kwargs_filter,
        **kwargs)
    if features_only:
        model.default_cfg = pretrained_cfg_for_features(model.default_cfg)
    return model


def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
    """Creates a MobileNet-V3 model.



    Ref impl: ?

    Paper: https://arxiv.org/abs/1905.02244



    Args:

      channel_multiplier: multiplier to number of channels per layer.

    """
    arch_def = [
        # stage 0, 112x112 in
        ['ds_r1_k3_s1_e1_c16_nre_noskip'],  # relu
        # stage 1, 112x112 in
        ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'],  # relu
        # stage 2, 56x56 in
        ['ir_r3_k5_s2_e3_c40_se0.25_nre'],  # relu
        # stage 3, 28x28 in
        ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'],  # hard-swish
        # stage 4, 14x14in
        ['ir_r2_k3_s1_e6_c112_se0.25'],  # hard-swish
        # stage 5, 14x14in
        ['ir_r3_k5_s2_e6_c160_se0.25'],  # hard-swish
        # stage 6, 7x7 in
        ['cn_r1_k1_s1_c960'],  # hard-swish
    ]
    model_kwargs = dict(
        block_args=decode_arch_def(arch_def),
        head_bias=False,
        round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
        norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
        act_layer=resolve_act_layer(kwargs, 'hard_swish'),
        se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid'),
        **kwargs,
    )
    model = _create_mnv3(variant, pretrained, **model_kwargs)
    return model


def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
    """Creates a MobileNet-V3 model.



    Ref impl: ?

    Paper: https://arxiv.org/abs/1905.02244



    Args:

      channel_multiplier: multiplier to number of channels per layer.

    """
    if 'small' in variant:
        num_features = 1024
        if 'minimal' in variant:
            act_layer = resolve_act_layer(kwargs, 'relu')
            arch_def = [
                # stage 0, 112x112 in
                ['ds_r1_k3_s2_e1_c16'],
                # stage 1, 56x56 in
                ['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'],
                # stage 2, 28x28 in
                ['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'],
                # stage 3, 14x14 in
                ['ir_r2_k3_s1_e3_c48'],
                # stage 4, 14x14in
                ['ir_r3_k3_s2_e6_c96'],
                # stage 6, 7x7 in
                ['cn_r1_k1_s1_c576'],
            ]
        else:
            act_layer = resolve_act_layer(kwargs, 'hard_swish')
            arch_def = [
                # stage 0, 112x112 in
                ['ds_r1_k3_s2_e1_c16_se0.25_nre'],  # relu
                # stage 1, 56x56 in
                ['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'],  # relu
                # stage 2, 28x28 in
                ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'],  # hard-swish
                # stage 3, 14x14 in
                ['ir_r2_k5_s1_e3_c48_se0.25'],  # hard-swish
                # stage 4, 14x14in
                ['ir_r3_k5_s2_e6_c96_se0.25'],  # hard-swish
                # stage 6, 7x7 in
                ['cn_r1_k1_s1_c576'],  # hard-swish
            ]
    else:
        num_features = 1280
        if 'minimal' in variant:
            act_layer = resolve_act_layer(kwargs, 'relu')
            arch_def = [
                # stage 0, 112x112 in
                ['ds_r1_k3_s1_e1_c16'],
                # stage 1, 112x112 in
                ['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'],
                # stage 2, 56x56 in
                ['ir_r3_k3_s2_e3_c40'],
                # stage 3, 28x28 in
                ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'],
                # stage 4, 14x14in
                ['ir_r2_k3_s1_e6_c112'],
                # stage 5, 14x14in
                ['ir_r3_k3_s2_e6_c160'],
                # stage 6, 7x7 in
                ['cn_r1_k1_s1_c960'],
            ]
        else:
            act_layer = resolve_act_layer(kwargs, 'hard_swish')
            arch_def = [
                # stage 0, 112x112 in
                ['ds_r1_k3_s1_e1_c16_nre'],  # relu
                # stage 1, 112x112 in
                ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'],  # relu
                # stage 2, 56x56 in
                ['ir_r3_k5_s2_e3_c40_se0.25_nre'],  # relu
                # stage 3, 28x28 in
                ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'],  # hard-swish
                # stage 4, 14x14in
                ['ir_r2_k3_s1_e6_c112_se0.25'],  # hard-swish
                # stage 5, 14x14in
                ['ir_r3_k5_s2_e6_c160_se0.25'],  # hard-swish
                # stage 6, 7x7 in
                ['cn_r1_k1_s1_c960'],  # hard-swish
            ]
    se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels)
    model_kwargs = dict(
        block_args=decode_arch_def(arch_def),
        num_features=num_features,
        stem_size=16,
        fix_stem=channel_multiplier < 0.75,
        round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
        norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
        act_layer=act_layer,
        se_layer=se_layer,
        **kwargs,
    )
    model = _create_mnv3(variant, pretrained, **model_kwargs)
    return model


def _gen_fbnetv3(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
    """ FBNetV3

    Paper: `FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining`

        - https://arxiv.org/abs/2006.02049

    FIXME untested, this is a preliminary impl of some FBNet-V3 variants.

    """
    vl = variant.split('_')[-1]
    if vl in ('a', 'b'):
        stem_size = 16
        arch_def = [
            ['ds_r2_k3_s1_e1_c16'],
            ['ir_r1_k5_s2_e4_c24', 'ir_r3_k5_s1_e2_c24'],
            ['ir_r1_k5_s2_e5_c40_se0.25', 'ir_r4_k5_s1_e3_c40_se0.25'],
            ['ir_r1_k5_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'],
            ['ir_r1_k3_s1_e5_c120_se0.25', 'ir_r5_k5_s1_e3_c120_se0.25'],
            ['ir_r1_k3_s2_e6_c184_se0.25', 'ir_r5_k5_s1_e4_c184_se0.25', 'ir_r1_k5_s1_e6_c224_se0.25'],
            ['cn_r1_k1_s1_c1344'],
        ]
    elif vl == 'd':
        stem_size = 24
        arch_def = [
            ['ds_r2_k3_s1_e1_c16'],
            ['ir_r1_k3_s2_e5_c24', 'ir_r5_k3_s1_e2_c24'],
            ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r4_k3_s1_e3_c40_se0.25'],
            ['ir_r1_k3_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'],
            ['ir_r1_k3_s1_e5_c128_se0.25', 'ir_r6_k5_s1_e3_c128_se0.25'],
            ['ir_r1_k3_s2_e6_c208_se0.25', 'ir_r5_k5_s1_e5_c208_se0.25', 'ir_r1_k5_s1_e6_c240_se0.25'],
            ['cn_r1_k1_s1_c1440'],
        ]
    elif vl == 'g':
        stem_size = 32
        arch_def = [
            ['ds_r3_k3_s1_e1_c24'],
            ['ir_r1_k5_s2_e4_c40', 'ir_r4_k5_s1_e2_c40'],
            ['ir_r1_k5_s2_e4_c56_se0.25', 'ir_r4_k5_s1_e3_c56_se0.25'],
            ['ir_r1_k5_s2_e5_c104', 'ir_r4_k3_s1_e3_c104'],
            ['ir_r1_k3_s1_e5_c160_se0.25', 'ir_r8_k5_s1_e3_c160_se0.25'],
            ['ir_r1_k3_s2_e6_c264_se0.25', 'ir_r6_k5_s1_e5_c264_se0.25', 'ir_r2_k5_s1_e6_c288_se0.25'],
            ['cn_r1_k1_s1_c1728'],
        ]
    else:
        raise NotImplemented
    round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.95)
    se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=round_chs_fn)
    act_layer = resolve_act_layer(kwargs, 'hard_swish')
    model_kwargs = dict(
        block_args=decode_arch_def(arch_def),
        num_features=1984,
        head_bias=False,
        stem_size=stem_size,
        round_chs_fn=round_chs_fn,
        se_from_exp=False,
        norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
        act_layer=act_layer,
        se_layer=se_layer,
        **kwargs,
    )
    model = _create_mnv3(variant, pretrained, **model_kwargs)
    return model


def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
    """ LCNet

    Essentially a MobileNet-V3 crossed with a MobileNet-V1



    Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099



    Args:

      channel_multiplier: multiplier to number of channels per layer.

    """
    arch_def = [
        # stage 0, 112x112 in
        ['dsa_r1_k3_s1_c32'],
        # stage 1, 112x112 in
        ['dsa_r2_k3_s2_c64'],
        # stage 2, 56x56 in
        ['dsa_r2_k3_s2_c128'],
        # stage 3, 28x28 in
        ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'],
        # stage 4, 14x14in
        ['dsa_r4_k5_s1_c256'],
        # stage 5, 14x14in
        ['dsa_r2_k5_s2_c512_se0.25'],
        # 7x7
    ]
    model_kwargs = dict(
        block_args=decode_arch_def(arch_def),
        stem_size=16,
        round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
        norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
        act_layer=resolve_act_layer(kwargs, 'hard_swish'),
        se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU),
        num_features=1280,
        **kwargs,
    )
    model = _create_mnv3(variant, pretrained, **model_kwargs)
    return model


def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
    """ LCNet

    Essentially a MobileNet-V3 crossed with a MobileNet-V1



    Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099



    Args:

      channel_multiplier: multiplier to number of channels per layer.

    """
    arch_def = [
        # stage 0, 112x112 in
        ['dsa_r1_k3_s1_c32'],
        # stage 1, 112x112 in
        ['dsa_r2_k3_s2_c64'],
        # stage 2, 56x56 in
        ['dsa_r2_k3_s2_c128'],
        # stage 3, 28x28 in
        ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'],
        # stage 4, 14x14in
        ['dsa_r4_k5_s1_c256'],
        # stage 5, 14x14in
        ['dsa_r2_k5_s2_c512_se0.25'],
        # 7x7
    ]
    model_kwargs = dict(
        block_args=decode_arch_def(arch_def),
        stem_size=16,
        round_chs_fn=partial(round_channels, multiplier=channel_multiplier),
        norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
        act_layer=resolve_act_layer(kwargs, 'hard_swish'),
        se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU),
        num_features=1280,
        **kwargs,
    )
    model = _create_mnv3(variant, pretrained, **model_kwargs)
    return model


@register_model
def mobilenetv3_large_075(pretrained=False, **kwargs):
    """ MobileNet V3 """
    model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
    return model


@register_model
def mobilenetv3_large_100(pretrained=False, **kwargs):
    """ MobileNet V3 """
    model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def mobilenetv3_large_100_miil(pretrained=False, **kwargs):
    """ MobileNet V3

    Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K

    """
    model = _gen_mobilenet_v3('mobilenetv3_large_100_miil', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def mobilenetv3_large_100_miil_in21k(pretrained=False, **kwargs):
    """ MobileNet V3, 21k pretraining

    Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K

    """
    model = _gen_mobilenet_v3('mobilenetv3_large_100_miil_in21k', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def mobilenetv3_small_050(pretrained=False, **kwargs):
    """ MobileNet V3 """
    model = _gen_mobilenet_v3('mobilenetv3_small_050', 0.50, pretrained=pretrained, **kwargs)
    return model


@register_model
def mobilenetv3_small_075(pretrained=False, **kwargs):
    """ MobileNet V3 """
    model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
    return model


@register_model
def mobilenetv3_small_100(pretrained=False, **kwargs):
    """ MobileNet V3 """
    model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def mobilenetv3_rw(pretrained=False, **kwargs):
    """ MobileNet V3 """
    if pretrained:
        # pretrained model trained with non-default BN epsilon
        kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
    model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def tf_mobilenetv3_large_075(pretrained=False, **kwargs):
    """ MobileNet V3 """
    kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
    kwargs['pad_type'] = 'same'
    model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
    return model


@register_model
def tf_mobilenetv3_large_100(pretrained=False, **kwargs):
    """ MobileNet V3 """
    kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
    kwargs['pad_type'] = 'same'
    model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
    """ MobileNet V3 """
    kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
    kwargs['pad_type'] = 'same'
    model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def tf_mobilenetv3_small_075(pretrained=False, **kwargs):
    """ MobileNet V3 """
    kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
    kwargs['pad_type'] = 'same'
    model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
    return model


@register_model
def tf_mobilenetv3_small_100(pretrained=False, **kwargs):
    """ MobileNet V3 """
    kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
    kwargs['pad_type'] = 'same'
    model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
    """ MobileNet V3 """
    kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
    kwargs['pad_type'] = 'same'
    model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def fbnetv3_b(pretrained=False, **kwargs):
    """ FBNetV3-B """
    model = _gen_fbnetv3('fbnetv3_b', pretrained=pretrained, **kwargs)
    return model


@register_model
def fbnetv3_d(pretrained=False, **kwargs):
    """ FBNetV3-D """
    model = _gen_fbnetv3('fbnetv3_d', pretrained=pretrained, **kwargs)
    return model


@register_model
def fbnetv3_g(pretrained=False, **kwargs):
    """ FBNetV3-G """
    model = _gen_fbnetv3('fbnetv3_g', pretrained=pretrained, **kwargs)
    return model


@register_model
def lcnet_035(pretrained=False, **kwargs):
    """ PP-LCNet 0.35"""
    model = _gen_lcnet('lcnet_035', 0.35, pretrained=pretrained, **kwargs)
    return model


@register_model
def lcnet_050(pretrained=False, **kwargs):
    """ PP-LCNet 0.5"""
    model = _gen_lcnet('lcnet_050', 0.5, pretrained=pretrained, **kwargs)
    return model


@register_model
def lcnet_075(pretrained=False, **kwargs):
    """ PP-LCNet 1.0"""
    model = _gen_lcnet('lcnet_075', 0.75, pretrained=pretrained, **kwargs)
    return model


@register_model
def lcnet_100(pretrained=False, **kwargs):
    """ PP-LCNet 1.0"""
    model = _gen_lcnet('lcnet_100', 1.0, pretrained=pretrained, **kwargs)
    return model


@register_model
def lcnet_150(pretrained=False, **kwargs):
    """ PP-LCNet 1.5"""
    model = _gen_lcnet('lcnet_150', 1.5, pretrained=pretrained, **kwargs)
    return model