Spaces:
Running
Running
File size: 35,743 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 |
""" Multi-Scale Vision Transformer v2
@inproceedings{li2021improved,
title={MViTv2: Improved multiscale vision transformers for classification and detection},
author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph},
booktitle={CVPR},
year={2022}
}
Code adapted from original Apache 2.0 licensed impl at https://github.com/facebookresearch/mvit
Original copyright below.
Modifications and timm support by / Copyright 2022, Ross Wightman
"""
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. All Rights Reserved.
import operator
from collections import OrderedDict
from dataclasses import dataclass
from functools import partial, reduce
from typing import Union, List, Tuple, Optional
import torch
import torch.utils.checkpoint as checkpoint
from torch import nn
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_function
from .helpers import build_model_with_cfg
from .layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple
from .registry import register_model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head.fc',
'fixed_input_size': True,
**kwargs
}
default_cfgs = dict(
mvitv2_tiny=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth'),
mvitv2_small=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth'),
mvitv2_base=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth'),
mvitv2_large=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth'),
mvitv2_base_in21k=_cfg(
url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth',
num_classes=19168),
mvitv2_large_in21k=_cfg(
url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth',
num_classes=19168),
mvitv2_huge_in21k=_cfg(
url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth',
num_classes=19168),
mvitv2_small_cls=_cfg(url=''),
)
@dataclass
class MultiScaleVitCfg:
depths: Tuple[int, ...] = (2, 3, 16, 3)
embed_dim: Union[int, Tuple[int, ...]] = 96
num_heads: Union[int, Tuple[int, ...]] = 1
mlp_ratio: float = 4.
pool_first: bool = False
expand_attn: bool = True
qkv_bias: bool = True
use_cls_token: bool = False
use_abs_pos: bool = False
residual_pooling: bool = True
mode: str = 'conv'
kernel_qkv: Tuple[int, int] = (3, 3)
stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2))
stride_kv: Optional[Tuple[Tuple[int, int]]] = None
stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4)
patch_kernel: Tuple[int, int] = (7, 7)
patch_stride: Tuple[int, int] = (4, 4)
patch_padding: Tuple[int, int] = (3, 3)
pool_type: str = 'max'
rel_pos_type: str = 'spatial'
act_layer: Union[str, Tuple[str, str]] = 'gelu'
norm_layer: Union[str, Tuple[str, str]] = 'layernorm'
norm_eps: float = 1e-6
def __post_init__(self):
num_stages = len(self.depths)
if not isinstance(self.embed_dim, (tuple, list)):
self.embed_dim = tuple(self.embed_dim * 2 ** i for i in range(num_stages))
assert len(self.embed_dim) == num_stages
if not isinstance(self.num_heads, (tuple, list)):
self.num_heads = tuple(self.num_heads * 2 ** i for i in range(num_stages))
assert len(self.num_heads) == num_stages
if self.stride_kv_adaptive is not None and self.stride_kv is None:
_stride_kv = self.stride_kv_adaptive
pool_kv_stride = []
for i in range(num_stages):
if min(self.stride_q[i]) > 1:
_stride_kv = [
max(_stride_kv[d] // self.stride_q[i][d], 1)
for d in range(len(_stride_kv))
]
pool_kv_stride.append(tuple(_stride_kv))
self.stride_kv = tuple(pool_kv_stride)
model_cfgs = dict(
mvitv2_tiny=MultiScaleVitCfg(
depths=(1, 2, 5, 2),
),
mvitv2_small=MultiScaleVitCfg(
depths=(1, 2, 11, 2),
),
mvitv2_base=MultiScaleVitCfg(
depths=(2, 3, 16, 3),
),
mvitv2_large=MultiScaleVitCfg(
depths=(2, 6, 36, 4),
embed_dim=144,
num_heads=2,
expand_attn=False,
),
mvitv2_base_in21k=MultiScaleVitCfg(
depths=(2, 3, 16, 3),
),
mvitv2_large_in21k=MultiScaleVitCfg(
depths=(2, 6, 36, 4),
embed_dim=144,
num_heads=2,
expand_attn=False,
),
mvitv2_small_cls=MultiScaleVitCfg(
depths=(1, 2, 11, 2),
use_cls_token=True,
),
)
def prod(iterable):
return reduce(operator.mul, iterable, 1)
class PatchEmbed(nn.Module):
"""
PatchEmbed.
"""
def __init__(
self,
dim_in=3,
dim_out=768,
kernel=(7, 7),
stride=(4, 4),
padding=(3, 3),
):
super().__init__()
self.proj = nn.Conv2d(
dim_in,
dim_out,
kernel_size=kernel,
stride=stride,
padding=padding,
)
def forward(self, x) -> Tuple[torch.Tensor, List[int]]:
x = self.proj(x)
# B C H W -> B HW C
return x.flatten(2).transpose(1, 2), x.shape[-2:]
@register_notrace_function
def reshape_pre_pool(
x,
feat_size: List[int],
has_cls_token: bool = True
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
H, W = feat_size
if has_cls_token:
cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :]
else:
cls_tok = None
x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous()
return x, cls_tok
@register_notrace_function
def reshape_post_pool(
x,
num_heads: int,
cls_tok: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, List[int]]:
feat_size = [x.shape[2], x.shape[3]]
L_pooled = x.shape[2] * x.shape[3]
x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3)
if cls_tok is not None:
x = torch.cat((cls_tok, x), dim=2)
return x, feat_size
@register_notrace_function
def cal_rel_pos_type(
attn: torch.Tensor,
q: torch.Tensor,
has_cls_token: bool,
q_size: List[int],
k_size: List[int],
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
):
"""
Spatial Relative Positional Embeddings.
"""
sp_idx = 1 if has_cls_token else 0
q_h, q_w = q_size
k_h, k_w = k_size
# Scale up rel pos if shapes for q and k are different.
q_h_ratio = max(k_h / q_h, 1.0)
k_h_ratio = max(q_h / k_h, 1.0)
dist_h = torch.arange(q_h)[:, None] * q_h_ratio - torch.arange(k_h)[None, :] * k_h_ratio
dist_h += (k_h - 1) * k_h_ratio
q_w_ratio = max(k_w / q_w, 1.0)
k_w_ratio = max(q_w / k_w, 1.0)
dist_w = torch.arange(q_w)[:, None] * q_w_ratio - torch.arange(k_w)[None, :] * k_w_ratio
dist_w += (k_w - 1) * k_w_ratio
Rh = rel_pos_h[dist_h.long()]
Rw = rel_pos_w[dist_w.long()]
B, n_head, q_N, dim = q.shape
r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim)
rel_h = torch.einsum("byhwc,hkc->byhwk", r_q, Rh)
rel_w = torch.einsum("byhwc,wkc->byhwk", r_q, Rw)
attn[:, :, sp_idx:, sp_idx:] = (
attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w)
+ rel_h[:, :, :, :, :, None]
+ rel_w[:, :, :, :, None, :]
).view(B, -1, q_h * q_w, k_h * k_w)
return attn
class MultiScaleAttentionPoolFirst(nn.Module):
def __init__(
self,
dim,
dim_out,
feat_size,
num_heads=8,
qkv_bias=True,
mode="conv",
kernel_q=(1, 1),
kernel_kv=(1, 1),
stride_q=(1, 1),
stride_kv=(1, 1),
has_cls_token=True,
rel_pos_type='spatial',
residual_pooling=True,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.num_heads = num_heads
self.dim_out = dim_out
self.head_dim = dim_out // num_heads
self.scale = self.head_dim ** -0.5
self.has_cls_token = has_cls_token
padding_q = tuple([int(q // 2) for q in kernel_q])
padding_kv = tuple([int(kv // 2) for kv in kernel_kv])
self.q = nn.Linear(dim, dim_out, bias=qkv_bias)
self.k = nn.Linear(dim, dim_out, bias=qkv_bias)
self.v = nn.Linear(dim, dim_out, bias=qkv_bias)
self.proj = nn.Linear(dim_out, dim_out)
# Skip pooling with kernel and stride size of (1, 1, 1).
if prod(kernel_q) == 1 and prod(stride_q) == 1:
kernel_q = None
if prod(kernel_kv) == 1 and prod(stride_kv) == 1:
kernel_kv = None
self.mode = mode
self.unshared = mode == 'conv_unshared'
self.pool_q, self.pool_k, self.pool_v = None, None, None
self.norm_q, self.norm_k, self.norm_v = None, None, None
if mode in ("avg", "max"):
pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d
if kernel_q:
self.pool_q = pool_op(kernel_q, stride_q, padding_q)
if kernel_kv:
self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv)
self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv)
elif mode == "conv" or mode == "conv_unshared":
dim_conv = dim // num_heads if mode == "conv" else dim
if kernel_q:
self.pool_q = nn.Conv2d(
dim_conv,
dim_conv,
kernel_q,
stride=stride_q,
padding=padding_q,
groups=dim_conv,
bias=False,
)
self.norm_q = norm_layer(dim_conv)
if kernel_kv:
self.pool_k = nn.Conv2d(
dim_conv,
dim_conv,
kernel_kv,
stride=stride_kv,
padding=padding_kv,
groups=dim_conv,
bias=False,
)
self.norm_k = norm_layer(dim_conv)
self.pool_v = nn.Conv2d(
dim_conv,
dim_conv,
kernel_kv,
stride=stride_kv,
padding=padding_kv,
groups=dim_conv,
bias=False,
)
self.norm_v = norm_layer(dim_conv)
else:
raise NotImplementedError(f"Unsupported model {mode}")
# relative pos embedding
self.rel_pos_type = rel_pos_type
if self.rel_pos_type == 'spatial':
assert feat_size[0] == feat_size[1]
size = feat_size[0]
q_size = size // stride_q[1] if len(stride_q) > 0 else size
kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size
rel_sp_dim = 2 * max(q_size, kv_size) - 1
self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
trunc_normal_tf_(self.rel_pos_h, std=0.02)
trunc_normal_tf_(self.rel_pos_w, std=0.02)
self.residual_pooling = residual_pooling
def forward(self, x, feat_size: List[int]):
B, N, _ = x.shape
fold_dim = 1 if self.unshared else self.num_heads
x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3)
q = k = v = x
if self.pool_q is not None:
q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token)
q = self.pool_q(q)
q, q_size = reshape_post_pool(q, self.num_heads, q_tok)
else:
q_size = feat_size
if self.norm_q is not None:
q = self.norm_q(q)
if self.pool_k is not None:
k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token)
k = self.pool_k(k)
k, k_size = reshape_post_pool(k, self.num_heads, k_tok)
else:
k_size = feat_size
if self.norm_k is not None:
k = self.norm_k(k)
if self.pool_v is not None:
v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token)
v = self.pool_v(v)
v, v_size = reshape_post_pool(v, self.num_heads, v_tok)
else:
v_size = feat_size
if self.norm_v is not None:
v = self.norm_v(v)
q_N = q_size[0] * q_size[1] + int(self.has_cls_token)
q = q.permute(0, 2, 1, 3).reshape(B, q_N, -1)
q = self.q(q).reshape(B, q_N, self.num_heads, -1).permute(0, 2, 1, 3)
k_N = k_size[0] * k_size[1] + int(self.has_cls_token)
k = k.permute(0, 2, 1, 3).reshape(B, k_N, -1)
k = self.k(k).reshape(B, k_N, self.num_heads, -1).permute(0, 2, 1, 3)
v_N = v_size[0] * v_size[1] + int(self.has_cls_token)
v = v.permute(0, 2, 1, 3).reshape(B, v_N, -1)
v = self.v(v).reshape(B, v_N, self.num_heads, -1).permute(0, 2, 1, 3)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.rel_pos_type == 'spatial':
attn = cal_rel_pos_type(
attn,
q,
self.has_cls_token,
q_size,
k_size,
self.rel_pos_h,
self.rel_pos_w,
)
attn = attn.softmax(dim=-1)
x = attn @ v
if self.residual_pooling:
x = x + q
x = x.transpose(1, 2).reshape(B, -1, self.dim_out)
x = self.proj(x)
return x, q_size
class MultiScaleAttention(nn.Module):
def __init__(
self,
dim,
dim_out,
feat_size,
num_heads=8,
qkv_bias=True,
mode="conv",
kernel_q=(1, 1),
kernel_kv=(1, 1),
stride_q=(1, 1),
stride_kv=(1, 1),
has_cls_token=True,
rel_pos_type='spatial',
residual_pooling=True,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.num_heads = num_heads
self.dim_out = dim_out
self.head_dim = dim_out // num_heads
self.scale = self.head_dim ** -0.5
self.has_cls_token = has_cls_token
padding_q = tuple([int(q // 2) for q in kernel_q])
padding_kv = tuple([int(kv // 2) for kv in kernel_kv])
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias)
self.proj = nn.Linear(dim_out, dim_out)
# Skip pooling with kernel and stride size of (1, 1, 1).
if prod(kernel_q) == 1 and prod(stride_q) == 1:
kernel_q = None
if prod(kernel_kv) == 1 and prod(stride_kv) == 1:
kernel_kv = None
self.mode = mode
self.unshared = mode == 'conv_unshared'
self.norm_q, self.norm_k, self.norm_v = None, None, None
self.pool_q, self.pool_k, self.pool_v = None, None, None
if mode in ("avg", "max"):
pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d
if kernel_q:
self.pool_q = pool_op(kernel_q, stride_q, padding_q)
if kernel_kv:
self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv)
self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv)
elif mode == "conv" or mode == "conv_unshared":
dim_conv = dim_out // num_heads if mode == "conv" else dim_out
if kernel_q:
self.pool_q = nn.Conv2d(
dim_conv,
dim_conv,
kernel_q,
stride=stride_q,
padding=padding_q,
groups=dim_conv,
bias=False,
)
self.norm_q = norm_layer(dim_conv)
if kernel_kv:
self.pool_k = nn.Conv2d(
dim_conv,
dim_conv,
kernel_kv,
stride=stride_kv,
padding=padding_kv,
groups=dim_conv,
bias=False,
)
self.norm_k = norm_layer(dim_conv)
self.pool_v = nn.Conv2d(
dim_conv,
dim_conv,
kernel_kv,
stride=stride_kv,
padding=padding_kv,
groups=dim_conv,
bias=False,
)
self.norm_v = norm_layer(dim_conv)
else:
raise NotImplementedError(f"Unsupported model {mode}")
# relative pos embedding
self.rel_pos_type = rel_pos_type
if self.rel_pos_type == 'spatial':
assert feat_size[0] == feat_size[1]
size = feat_size[0]
q_size = size // stride_q[1] if len(stride_q) > 0 else size
kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size
rel_sp_dim = 2 * max(q_size, kv_size) - 1
self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim))
trunc_normal_tf_(self.rel_pos_h, std=0.02)
trunc_normal_tf_(self.rel_pos_w, std=0.02)
self.residual_pooling = residual_pooling
def forward(self, x, feat_size: List[int]):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(dim=0)
if self.pool_q is not None:
q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token)
q = self.pool_q(q)
q, q_size = reshape_post_pool(q, self.num_heads, q_tok)
else:
q_size = feat_size
if self.norm_q is not None:
q = self.norm_q(q)
if self.pool_k is not None:
k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token)
k = self.pool_k(k)
k, k_size = reshape_post_pool(k, self.num_heads, k_tok)
else:
k_size = feat_size
if self.norm_k is not None:
k = self.norm_k(k)
if self.pool_v is not None:
v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token)
v = self.pool_v(v)
v, _ = reshape_post_pool(v, self.num_heads, v_tok)
if self.norm_v is not None:
v = self.norm_v(v)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.rel_pos_type == 'spatial':
attn = cal_rel_pos_type(
attn,
q,
self.has_cls_token,
q_size,
k_size,
self.rel_pos_h,
self.rel_pos_w,
)
attn = attn.softmax(dim=-1)
x = attn @ v
if self.residual_pooling:
x = x + q
x = x.transpose(1, 2).reshape(B, -1, self.dim_out)
x = self.proj(x)
return x, q_size
class MultiScaleBlock(nn.Module):
def __init__(
self,
dim,
dim_out,
num_heads,
feat_size,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=0.0,
norm_layer=nn.LayerNorm,
kernel_q=(1, 1),
kernel_kv=(1, 1),
stride_q=(1, 1),
stride_kv=(1, 1),
mode="conv",
has_cls_token=True,
expand_attn=False,
pool_first=False,
rel_pos_type='spatial',
residual_pooling=True,
):
super().__init__()
proj_needed = dim != dim_out
self.dim = dim
self.dim_out = dim_out
self.has_cls_token = has_cls_token
self.norm1 = norm_layer(dim)
self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None
if stride_q and prod(stride_q) > 1:
kernel_skip = [s + 1 if s > 1 else s for s in stride_q]
stride_skip = stride_q
padding_skip = [int(skip // 2) for skip in kernel_skip]
self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip)
else:
self.shortcut_pool_attn = None
att_dim = dim_out if expand_attn else dim
attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention
self.attn = attn_layer(
dim,
att_dim,
num_heads=num_heads,
feat_size=feat_size,
qkv_bias=qkv_bias,
kernel_q=kernel_q,
kernel_kv=kernel_kv,
stride_q=stride_q,
stride_kv=stride_kv,
norm_layer=norm_layer,
has_cls_token=has_cls_token,
mode=mode,
rel_pos_type=rel_pos_type,
residual_pooling=residual_pooling,
)
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(att_dim)
mlp_dim_out = dim_out
self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and not expand_attn else None
self.mlp = Mlp(
in_features=att_dim,
hidden_features=int(att_dim * mlp_ratio),
out_features=mlp_dim_out,
)
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def _shortcut_pool(self, x, feat_size: List[int]):
if self.shortcut_pool_attn is None:
return x
if self.has_cls_token:
cls_tok, x = x[:, :1, :], x[:, 1:, :]
else:
cls_tok = None
B, L, C = x.shape
H, W = feat_size
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()
x = self.shortcut_pool_attn(x)
x = x.reshape(B, C, -1).transpose(1, 2)
if cls_tok is not None:
x = torch.cat((cls_tok, x), dim=1)
return x
def forward(self, x, feat_size: List[int]):
x_norm = self.norm1(x)
# NOTE as per the original impl, this seems odd, but shortcut uses un-normalized input if no proj
x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm)
x_shortcut = self._shortcut_pool(x_shortcut, feat_size)
x, feat_size_new = self.attn(x_norm, feat_size)
x = x_shortcut + self.drop_path1(x)
x_norm = self.norm2(x)
x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm)
x = x_shortcut + self.drop_path2(self.mlp(x_norm))
return x, feat_size_new
class MultiScaleVitStage(nn.Module):
def __init__(
self,
dim,
dim_out,
depth,
num_heads,
feat_size,
mlp_ratio=4.0,
qkv_bias=True,
mode="conv",
kernel_q=(1, 1),
kernel_kv=(1, 1),
stride_q=(1, 1),
stride_kv=(1, 1),
has_cls_token=True,
expand_attn=False,
pool_first=False,
rel_pos_type='spatial',
residual_pooling=True,
norm_layer=nn.LayerNorm,
drop_path=0.0,
):
super().__init__()
self.grad_checkpointing = False
self.blocks = nn.ModuleList()
if expand_attn:
out_dims = (dim_out,) * depth
else:
out_dims = (dim,) * (depth - 1) + (dim_out,)
for i in range(depth):
attention_block = MultiScaleBlock(
dim=dim,
dim_out=out_dims[i],
num_heads=num_heads,
feat_size=feat_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
kernel_q=kernel_q,
kernel_kv=kernel_kv,
stride_q=stride_q if i == 0 else (1, 1),
stride_kv=stride_kv,
mode=mode,
has_cls_token=has_cls_token,
pool_first=pool_first,
rel_pos_type=rel_pos_type,
residual_pooling=residual_pooling,
expand_attn=expand_attn,
norm_layer=norm_layer,
drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path,
)
dim = out_dims[i]
self.blocks.append(attention_block)
if i == 0:
feat_size = tuple([size // stride for size, stride in zip(feat_size, stride_q)])
self.feat_size = feat_size
def forward(self, x, feat_size: List[int]):
for blk in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x, feat_size = checkpoint.checkpoint(blk, x, feat_size)
else:
x, feat_size = blk(x, feat_size)
return x, feat_size
class MultiScaleVit(nn.Module):
"""
Improved Multiscale Vision Transformers for Classification and Detection
Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik,
Christoph Feichtenhofer*
https://arxiv.org/abs/2112.01526
Multiscale Vision Transformers
Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan, Jitendra Malik,
Christoph Feichtenhofer*
https://arxiv.org/abs/2104.11227
"""
def __init__(
self,
cfg: MultiScaleVitCfg,
img_size: Tuple[int, int] = (224, 224),
in_chans: int = 3,
global_pool: str = 'avg',
num_classes: int = 1000,
drop_path_rate: float = 0.,
drop_rate: float = 0.,
):
super().__init__()
img_size = to_2tuple(img_size)
norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.global_pool = global_pool
self.depths = tuple(cfg.depths)
self.expand_attn = cfg.expand_attn
embed_dim = cfg.embed_dim[0]
self.patch_embed = PatchEmbed(
dim_in=in_chans,
dim_out=embed_dim,
kernel=cfg.patch_kernel,
stride=cfg.patch_stride,
padding=cfg.patch_padding,
)
patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1])
num_patches = prod(patch_dims)
if cfg.use_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.num_prefix_tokens = 1
pos_embed_dim = num_patches + 1
else:
self.num_prefix_tokens = 0
self.cls_token = None
pos_embed_dim = num_patches
if cfg.use_abs_pos:
self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim))
else:
self.pos_embed = None
num_stages = len(cfg.embed_dim)
feat_size = patch_dims
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)]
self.stages = nn.ModuleList()
for i in range(num_stages):
if cfg.expand_attn:
dim_out = cfg.embed_dim[i]
else:
dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)]
stage = MultiScaleVitStage(
dim=embed_dim,
dim_out=dim_out,
depth=cfg.depths[i],
num_heads=cfg.num_heads[i],
feat_size=feat_size,
mlp_ratio=cfg.mlp_ratio,
qkv_bias=cfg.qkv_bias,
mode=cfg.mode,
pool_first=cfg.pool_first,
expand_attn=cfg.expand_attn,
kernel_q=cfg.kernel_qkv,
kernel_kv=cfg.kernel_qkv,
stride_q=cfg.stride_q[i],
stride_kv=cfg.stride_kv[i],
has_cls_token=cfg.use_cls_token,
rel_pos_type=cfg.rel_pos_type,
residual_pooling=cfg.residual_pooling,
norm_layer=norm_layer,
drop_path=dpr[i],
)
embed_dim = dim_out
feat_size = stage.feat_size
self.stages.append(stage)
self.num_features = embed_dim
self.norm = norm_layer(embed_dim)
self.head = nn.Sequential(OrderedDict([
('drop', nn.Dropout(self.drop_rate)),
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())
]))
if self.pos_embed is not None:
trunc_normal_tf_(self.pos_embed, std=0.02)
if self.cls_token is not None:
trunc_normal_tf_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_tf_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
@torch.jit.ignore
def no_weight_decay(self):
return {k for k, _ in self.named_parameters()
if any(n in k for n in ["pos_embed", "rel_pos_h", "rel_pos_w", "cls_token"])}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^patch_embed', # stem and embed
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
self.global_pool = global_pool
self.head = nn.Sequential(OrderedDict([
('drop', nn.Dropout(self.drop_rate)),
('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity())
]))
def forward_features(self, x):
x, feat_size = self.patch_embed(x)
B, N, C = x.shape
if self.cls_token is not None:
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
for stage in self.stages:
x, feat_size = stage(x, feat_size)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
if self.global_pool == 'avg':
x = x[:, self.num_prefix_tokens:].mean(1)
else:
x = x[:, 0]
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def checkpoint_filter_fn(state_dict, model):
if 'stages.0.blocks.0.norm1.weight' in state_dict:
return state_dict
import re
if 'model_state' in state_dict:
state_dict = state_dict['model_state']
depths = getattr(model, 'depths', None)
expand_attn = getattr(model, 'expand_attn', True)
assert depths is not None, 'model requires depth attribute to remap checkpoints'
depth_map = {}
block_idx = 0
for stage_idx, d in enumerate(depths):
depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)})
block_idx += d
out_dict = {}
for k, v in state_dict.items():
k = re.sub(
r'blocks\.(\d+)',
lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}',
k)
if expand_attn:
k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k)
else:
k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k)
if 'head' in k:
k = k.replace('head.projection', 'head.fc')
out_dict[k] = v
# for k, v in state_dict.items():
# if model.pos_embed is not None and k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
# # To resize pos embedding when using model at different size from pretrained weights
# v = resize_pos_embed(
# v,
# model.pos_embed,
# 0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1),
# model.patch_embed.grid_size
# )
return out_dict
def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs):
return build_model_with_cfg(
MultiScaleVit, variant, pretrained,
model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant],
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(flatten_sequential=True),
**kwargs)
@register_model
def mvitv2_tiny(pretrained=False, **kwargs):
return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs)
@register_model
def mvitv2_small(pretrained=False, **kwargs):
return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs)
@register_model
def mvitv2_base(pretrained=False, **kwargs):
return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs)
@register_model
def mvitv2_large(pretrained=False, **kwargs):
return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs)
# @register_model
# def mvitv2_base_in21k(pretrained=False, **kwargs):
# return _create_mvitv2('mvitv2_base_in21k', pretrained=pretrained, **kwargs)
#
#
# @register_model
# def mvitv2_large_in21k(pretrained=False, **kwargs):
# return _create_mvitv2('mvitv2_large_in21k', pretrained=pretrained, **kwargs)
#
#
# @register_model
# def mvitv2_huge_in21k(pretrained=False, **kwargs):
# return _create_mvitv2('mvitv2_huge_in21k', pretrained=pretrained, **kwargs)
@register_model
def mvitv2_small_cls(pretrained=False, **kwargs):
return _create_mvitv2('mvitv2_small_cls', pretrained=pretrained, **kwargs)
|