Spaces:
Running
Running
File size: 20,610 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
""" Nested Transformer (NesT) in PyTorch
A PyTorch implement of Aggregating Nested Transformers as described in:
'Aggregating Nested Transformers'
- https://arxiv.org/abs/2105.12723
The official Jax code is released and available at https://github.com/google-research/nested-transformer. The weights
have been converted with convert/convert_nest_flax.py
Acknowledgments:
* The paper authors for sharing their research, code, and model weights
* Ross Wightman's existing code off which I based this
Copyright 2021 Alexander Soare
"""
import collections.abc
import logging
import math
from functools import partial
import torch
import torch.nn.functional as F
from torch import nn
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_function
from .helpers import build_model_with_cfg, named_apply, checkpoint_seq
from .layers import PatchEmbed, Mlp, DropPath, create_classifier, trunc_normal_
from .layers import _assert
from .layers import create_conv2d, create_pool2d, to_ntuple
from .registry import register_model
_logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': [14, 14],
'crop_pct': .875, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# (weights from official Google JAX impl)
'nest_base': _cfg(),
'nest_small': _cfg(),
'nest_tiny': _cfg(),
'jx_nest_base': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/jx_nest_base-8bc41011.pth'),
'jx_nest_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/jx_nest_small-422eaded.pth'),
'jx_nest_tiny': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/jx_nest_tiny-e3428fb9.pth'),
}
class Attention(nn.Module):
"""
This is much like `.vision_transformer.Attention` but uses *localised* self attention by accepting an input with
an extra "image block" dim
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, 3*dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
"""
x is shape: B (batch_size), T (image blocks), N (seq length per image block), C (embed dim)
"""
B, T, N, C = x.shape
# result of next line is (qkv, B, num (H)eads, T, N, (C')hannels per head)
qkv = self.qkv(x).reshape(B, T, N, 3, self.num_heads, C // self.num_heads).permute(3, 0, 4, 1, 2, 5)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale # (B, H, T, N, N)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# (B, H, T, N, C'), permute -> (B, T, N, C', H)
x = (attn @ v).permute(0, 2, 3, 4, 1).reshape(B, T, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x # (B, T, N, C)
class TransformerLayer(nn.Module):
"""
This is much like `.vision_transformer.Block` but:
- Called TransformerLayer here to allow for "block" as defined in the paper ("non-overlapping image blocks")
- Uses modified Attention layer that handles the "block" dimension
"""
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
y = self.norm1(x)
x = x + self.drop_path(self.attn(y))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class ConvPool(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer, pad_type=''):
super().__init__()
self.conv = create_conv2d(in_channels, out_channels, kernel_size=3, padding=pad_type, bias=True)
self.norm = norm_layer(out_channels)
self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=pad_type)
def forward(self, x):
"""
x is expected to have shape (B, C, H, W)
"""
_assert(x.shape[-2] % 2 == 0, 'BlockAggregation requires even input spatial dims')
_assert(x.shape[-1] % 2 == 0, 'BlockAggregation requires even input spatial dims')
x = self.conv(x)
# Layer norm done over channel dim only
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
x = self.pool(x)
return x # (B, C, H//2, W//2)
def blockify(x, block_size: int):
"""image to blocks
Args:
x (Tensor): with shape (B, H, W, C)
block_size (int): edge length of a single square block in units of H, W
"""
B, H, W, C = x.shape
_assert(H % block_size == 0, '`block_size` must divide input height evenly')
_assert(W % block_size == 0, '`block_size` must divide input width evenly')
grid_height = H // block_size
grid_width = W // block_size
x = x.reshape(B, grid_height, block_size, grid_width, block_size, C)
x = x.transpose(2, 3).reshape(B, grid_height * grid_width, -1, C)
return x # (B, T, N, C)
@register_notrace_function # reason: int receives Proxy
def deblockify(x, block_size: int):
"""blocks to image
Args:
x (Tensor): with shape (B, T, N, C) where T is number of blocks and N is sequence size per block
block_size (int): edge length of a single square block in units of desired H, W
"""
B, T, _, C = x.shape
grid_size = int(math.sqrt(T))
height = width = grid_size * block_size
x = x.reshape(B, grid_size, grid_size, block_size, block_size, C)
x = x.transpose(2, 3).reshape(B, height, width, C)
return x # (B, H, W, C)
class NestLevel(nn.Module):
""" Single hierarchical level of a Nested Transformer
"""
def __init__(
self, num_blocks, block_size, seq_length, num_heads, depth, embed_dim, prev_embed_dim=None,
mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rates=[],
norm_layer=None, act_layer=None, pad_type=''):
super().__init__()
self.block_size = block_size
self.grad_checkpointing = False
self.pos_embed = nn.Parameter(torch.zeros(1, num_blocks, seq_length, embed_dim))
if prev_embed_dim is not None:
self.pool = ConvPool(prev_embed_dim, embed_dim, norm_layer=norm_layer, pad_type=pad_type)
else:
self.pool = nn.Identity()
# Transformer encoder
if len(drop_path_rates):
assert len(drop_path_rates) == depth, 'Must provide as many drop path rates as there are transformer layers'
self.transformer_encoder = nn.Sequential(*[
TransformerLayer(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_rates[i],
norm_layer=norm_layer, act_layer=act_layer)
for i in range(depth)])
def forward(self, x):
"""
expects x as (B, C, H, W)
"""
x = self.pool(x)
x = x.permute(0, 2, 3, 1) # (B, H', W', C), switch to channels last for transformer
x = blockify(x, self.block_size) # (B, T, N, C')
x = x + self.pos_embed
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.transformer_encoder, x)
else:
x = self.transformer_encoder(x) # (B, T, N, C')
x = deblockify(x, self.block_size) # (B, H', W', C')
# Channel-first for block aggregation, and generally to replicate convnet feature map at each stage
return x.permute(0, 3, 1, 2) # (B, C, H', W')
class Nest(nn.Module):
""" Nested Transformer (NesT)
A PyTorch impl of : `Aggregating Nested Transformers`
- https://arxiv.org/abs/2105.12723
"""
def __init__(
self, img_size=224, in_chans=3, patch_size=4, num_levels=3, embed_dims=(128, 256, 512),
num_heads=(4, 8, 16), depths=(2, 2, 20), num_classes=1000, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.5, norm_layer=None, act_layer=None,
pad_type='', weight_init='', global_pool='avg'
):
"""
Args:
img_size (int, tuple): input image size
in_chans (int): number of input channels
patch_size (int): patch size
num_levels (int): number of block hierarchies (T_d in the paper)
embed_dims (int, tuple): embedding dimensions of each level
num_heads (int, tuple): number of attention heads for each level
depths (int, tuple): number of transformer layers for each level
num_classes (int): number of classes for classification head
mlp_ratio (int): ratio of mlp hidden dim to embedding dim for MLP of transformer layers
qkv_bias (bool): enable bias for qkv if True
drop_rate (float): dropout rate for MLP of transformer layers, MSA final projection layer, and classifier
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer for transformer layers
act_layer: (nn.Module): activation layer in MLP of transformer layers
pad_type: str: Type of padding to use '' for PyTorch symmetric, 'same' for TF SAME
weight_init: (str): weight init scheme
global_pool: (str): type of pooling operation to apply to final feature map
Notes:
- Default values follow NesT-B from the original Jax code.
- `embed_dims`, `num_heads`, `depths` should be ints or tuples with length `num_levels`.
- For those following the paper, Table A1 may have errors!
- https://github.com/google-research/nested-transformer/issues/2
"""
super().__init__()
for param_name in ['embed_dims', 'num_heads', 'depths']:
param_value = locals()[param_name]
if isinstance(param_value, collections.abc.Sequence):
assert len(param_value) == num_levels, f'Require `len({param_name}) == num_levels`'
embed_dims = to_ntuple(num_levels)(embed_dims)
num_heads = to_ntuple(num_levels)(num_heads)
depths = to_ntuple(num_levels)(depths)
self.num_classes = num_classes
self.num_features = embed_dims[-1]
self.feature_info = []
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.drop_rate = drop_rate
self.num_levels = num_levels
if isinstance(img_size, collections.abc.Sequence):
assert img_size[0] == img_size[1], 'Model only handles square inputs'
img_size = img_size[0]
assert img_size % patch_size == 0, '`patch_size` must divide `img_size` evenly'
self.patch_size = patch_size
# Number of blocks at each level
self.num_blocks = (4 ** torch.arange(num_levels)).flip(0).tolist()
assert (img_size // patch_size) % math.sqrt(self.num_blocks[0]) == 0, \
'First level blocks don\'t fit evenly. Check `img_size`, `patch_size`, and `num_levels`'
# Block edge size in units of patches
# Hint: (img_size // patch_size) gives number of patches along edge of image. sqrt(self.num_blocks[0]) is the
# number of blocks along edge of image
self.block_size = int((img_size // patch_size) // math.sqrt(self.num_blocks[0]))
# Patch embedding
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0], flatten=False)
self.num_patches = self.patch_embed.num_patches
self.seq_length = self.num_patches // self.num_blocks[0]
# Build up each hierarchical level
levels = []
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
prev_dim = None
curr_stride = 4
for i in range(len(self.num_blocks)):
dim = embed_dims[i]
levels.append(NestLevel(
self.num_blocks[i], self.block_size, self.seq_length, num_heads[i], depths[i], dim, prev_dim,
mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, dp_rates[i], norm_layer, act_layer, pad_type=pad_type))
self.feature_info += [dict(num_chs=dim, reduction=curr_stride, module=f'levels.{i}')]
prev_dim = dim
curr_stride *= 2
self.levels = nn.Sequential(*levels)
# Final normalization layer
self.norm = norm_layer(embed_dims[-1])
# Classifier
self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
self.init_weights(weight_init)
@torch.jit.ignore
def init_weights(self, mode=''):
assert mode in ('nlhb', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
for level in self.levels:
trunc_normal_(level.pos_embed, std=.02, a=-2, b=2)
named_apply(partial(_init_nest_weights, head_bias=head_bias), self)
@torch.jit.ignore
def no_weight_decay(self):
return {f'level.{i}.pos_embed' for i in range(len(self.levels))}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^patch_embed', # stem and embed
blocks=[
(r'^levels\.(\d+)' if coarse else r'^levels\.(\d+)\.transformer_encoder\.(\d+)', None),
(r'^levels\.(\d+)\.(?:pool|pos_embed)', (0,)),
(r'^norm', (99999,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for l in self.levels:
l.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.head = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
x = self.patch_embed(x)
x = self.levels(x)
# Layer norm done over channel dim only (to NHWC and back)
x = self.norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _init_nest_weights(module: nn.Module, name: str = '', head_bias: float = 0.):
""" NesT weight initialization
Can replicate Jax implementation. Otherwise follows vision_transformer.py
"""
if isinstance(module, nn.Linear):
if name.startswith('head'):
trunc_normal_(module.weight, std=.02, a=-2, b=2)
nn.init.constant_(module.bias, head_bias)
else:
trunc_normal_(module.weight, std=.02, a=-2, b=2)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv2d):
trunc_normal_(module.weight, std=.02, a=-2, b=2)
if module.bias is not None:
nn.init.zeros_(module.bias)
def resize_pos_embed(posemb, posemb_new):
"""
Rescale the grid of position embeddings when loading from state_dict
Expected shape of position embeddings is (1, T, N, C), and considers only square images
"""
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
seq_length_old = posemb.shape[2]
num_blocks_new, seq_length_new = posemb_new.shape[1:3]
size_new = int(math.sqrt(num_blocks_new*seq_length_new))
# First change to (1, C, H, W)
posemb = deblockify(posemb, int(math.sqrt(seq_length_old))).permute(0, 3, 1, 2)
posemb = F.interpolate(posemb, size=[size_new, size_new], mode='bicubic', align_corners=False)
# Now change to new (1, T, N, C)
posemb = blockify(posemb.permute(0, 2, 3, 1), int(math.sqrt(seq_length_new)))
return posemb
def checkpoint_filter_fn(state_dict, model):
""" resize positional embeddings of pretrained weights """
pos_embed_keys = [k for k in state_dict.keys() if k.startswith('pos_embed_')]
for k in pos_embed_keys:
if state_dict[k].shape != getattr(model, k).shape:
state_dict[k] = resize_pos_embed(state_dict[k], getattr(model, k))
return state_dict
def _create_nest(variant, pretrained=False, **kwargs):
model = build_model_with_cfg(
Nest, variant, pretrained,
feature_cfg=dict(out_indices=(0, 1, 2), flatten_sequential=True),
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
@register_model
def nest_base(pretrained=False, **kwargs):
""" Nest-B @ 224x224
"""
model_kwargs = dict(
embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs)
model = _create_nest('nest_base', pretrained=pretrained, **model_kwargs)
return model
@register_model
def nest_small(pretrained=False, **kwargs):
""" Nest-S @ 224x224
"""
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs)
model = _create_nest('nest_small', pretrained=pretrained, **model_kwargs)
return model
@register_model
def nest_tiny(pretrained=False, **kwargs):
""" Nest-T @ 224x224
"""
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs)
model = _create_nest('nest_tiny', pretrained=pretrained, **model_kwargs)
return model
@register_model
def jx_nest_base(pretrained=False, **kwargs):
""" Nest-B @ 224x224, Pretrained weights converted from official Jax impl.
"""
kwargs['pad_type'] = 'same'
model_kwargs = dict(embed_dims=(128, 256, 512), num_heads=(4, 8, 16), depths=(2, 2, 20), **kwargs)
model = _create_nest('jx_nest_base', pretrained=pretrained, **model_kwargs)
return model
@register_model
def jx_nest_small(pretrained=False, **kwargs):
""" Nest-S @ 224x224, Pretrained weights converted from official Jax impl.
"""
kwargs['pad_type'] = 'same'
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 20), **kwargs)
model = _create_nest('jx_nest_small', pretrained=pretrained, **model_kwargs)
return model
@register_model
def jx_nest_tiny(pretrained=False, **kwargs):
""" Nest-T @ 224x224, Pretrained weights converted from official Jax impl.
"""
kwargs['pad_type'] = 'same'
model_kwargs = dict(embed_dims=(96, 192, 384), num_heads=(3, 6, 12), depths=(2, 2, 8), **kwargs)
model = _create_nest('jx_nest_tiny', pretrained=pretrained, **model_kwargs)
return model
|