File size: 38,690 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
""" Normalization Free Nets. NFNet, NF-RegNet, NF-ResNet (pre-activation) Models



Paper: `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

    - https://arxiv.org/abs/2101.08692



Paper: `High-Performance Large-Scale Image Recognition Without Normalization`

    - https://arxiv.org/abs/2102.06171



Official Deepmind JAX code: https://github.com/deepmind/deepmind-research/tree/master/nfnets



Status:

* These models are a work in progress, experiments ongoing.

* Pretrained weights for two models so far, more to come.

* Model details updated to closer match official JAX code now that it's released

* NF-ResNet, NF-RegNet-B, and NFNet-F models supported



Hacked together by / copyright Ross Wightman, 2021.

"""
import math
from dataclasses import dataclass, field
from collections import OrderedDict
from typing import Tuple, Optional
from functools import partial

import torch
import torch.nn as nn

from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .fx_features import register_notrace_module
from .helpers import build_model_with_cfg, checkpoint_seq
from .registry import register_model
from .layers import ClassifierHead, DropPath, AvgPool2dSame, ScaledStdConv2d, ScaledStdConv2dSame,\
    get_act_layer, get_act_fn, get_attn, make_divisible


def _dcfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.9, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.conv1', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = dict(
    dm_nfnet_f0=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f0-604f9c3a.pth',
        pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), crop_pct=.9),
    dm_nfnet_f1=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f1-fc540f82.pth',
        pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320), crop_pct=0.91),
    dm_nfnet_f2=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f2-89875923.pth',
        pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352), crop_pct=0.92),
    dm_nfnet_f3=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f3-d74ab3aa.pth',
        pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416), crop_pct=0.94),
    dm_nfnet_f4=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f4-0ac5b10b.pth',
        pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512), crop_pct=0.951),
    dm_nfnet_f5=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f5-ecb20ab1.pth',
        pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544), crop_pct=0.954),
    dm_nfnet_f6=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-dnf-weights/dm_nfnet_f6-e0f12116.pth',
        pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576), crop_pct=0.956),

    nfnet_f0=_dcfg(
        url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256)),
    nfnet_f1=_dcfg(
        url='', pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 320, 320)),
    nfnet_f2=_dcfg(
        url='', pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 352, 352)),
    nfnet_f3=_dcfg(
        url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 416, 416)),
    nfnet_f4=_dcfg(
        url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 512, 512)),
    nfnet_f5=_dcfg(
        url='', pool_size=(13, 13), input_size=(3, 416, 416), test_input_size=(3, 544, 544)),
    nfnet_f6=_dcfg(
        url='', pool_size=(14, 14), input_size=(3, 448, 448), test_input_size=(3, 576, 576)),
    nfnet_f7=_dcfg(
        url='', pool_size=(15, 15), input_size=(3, 480, 480), test_input_size=(3, 608, 608)),

    nfnet_l0=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nfnet_l0_ra2-45c6688d.pth',
        pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), crop_pct=1.0),
    eca_nfnet_l0=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l0_ra2-e3e9ac50.pth',
        hf_hub_id='timm/eca_nfnet_l0',
        pool_size=(7, 7), input_size=(3, 224, 224), test_input_size=(3, 288, 288), crop_pct=1.0),
    eca_nfnet_l1=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l1_ra2-7dce93cd.pth',
        pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 320, 320), crop_pct=1.0),
    eca_nfnet_l2=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ecanfnet_l2_ra3-da781a61.pth',
        pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), crop_pct=1.0),
    eca_nfnet_l3=_dcfg(
        url='',
        pool_size=(11, 11), input_size=(3, 352, 352), test_input_size=(3, 448, 448), crop_pct=1.0),

    nf_regnet_b0=_dcfg(
        url='', pool_size=(6, 6), input_size=(3, 192, 192), test_input_size=(3, 256, 256), first_conv='stem.conv'),
    nf_regnet_b1=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_regnet_b1_256_ra2-ad85cfef.pth',
        pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), first_conv='stem.conv'),  # NOT to paper spec
    nf_regnet_b2=_dcfg(
        url='', pool_size=(8, 8), input_size=(3, 240, 240), test_input_size=(3, 272, 272), first_conv='stem.conv'),
    nf_regnet_b3=_dcfg(
        url='', pool_size=(9, 9), input_size=(3, 288, 288), test_input_size=(3, 320, 320), first_conv='stem.conv'),
    nf_regnet_b4=_dcfg(
        url='', pool_size=(10, 10), input_size=(3, 320, 320), test_input_size=(3, 384, 384), first_conv='stem.conv'),
    nf_regnet_b5=_dcfg(
        url='', pool_size=(12, 12), input_size=(3, 384, 384), test_input_size=(3, 456, 456), first_conv='stem.conv'),

    nf_resnet26=_dcfg(url='', first_conv='stem.conv'),
    nf_resnet50=_dcfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/nf_resnet50_ra2-9f236009.pth',
        pool_size=(8, 8), input_size=(3, 256, 256), test_input_size=(3, 288, 288), crop_pct=0.94, first_conv='stem.conv'),
    nf_resnet101=_dcfg(url='', first_conv='stem.conv'),

    nf_seresnet26=_dcfg(url='', first_conv='stem.conv'),
    nf_seresnet50=_dcfg(url='', first_conv='stem.conv'),
    nf_seresnet101=_dcfg(url='', first_conv='stem.conv'),

    nf_ecaresnet26=_dcfg(url='', first_conv='stem.conv'),
    nf_ecaresnet50=_dcfg(url='', first_conv='stem.conv'),
    nf_ecaresnet101=_dcfg(url='', first_conv='stem.conv'),
)


@dataclass
class NfCfg:
    depths: Tuple[int, int, int, int]
    channels: Tuple[int, int, int, int]
    alpha: float = 0.2
    stem_type: str = '3x3'
    stem_chs: Optional[int] = None
    group_size: Optional[int] = None
    attn_layer: Optional[str] = None
    attn_kwargs: dict = None
    attn_gain: float = 2.0  # NF correction gain to apply if attn layer is used
    width_factor: float = 1.0
    bottle_ratio: float = 0.5
    num_features: int = 0  # num out_channels for final conv, no final_conv if 0
    ch_div: int = 8  # round channels % 8 == 0 to keep tensor-core use optimal
    reg: bool = False  # enables EfficientNet-like options used in RegNet variants, expand from in_chs, se in middle
    extra_conv: bool = False  # extra 3x3 bottleneck convolution for NFNet models
    gamma_in_act: bool = False
    same_padding: bool = False
    std_conv_eps: float = 1e-5
    skipinit: bool = False  # disabled by default, non-trivial performance impact
    zero_init_fc: bool = False
    act_layer: str = 'silu'


def _nfres_cfg(

        depths, channels=(256, 512, 1024, 2048), group_size=None, act_layer='relu', attn_layer=None, attn_kwargs=None):
    attn_kwargs = attn_kwargs or {}
    cfg = NfCfg(
        depths=depths, channels=channels, stem_type='7x7_pool', stem_chs=64, bottle_ratio=0.25,
        group_size=group_size, act_layer=act_layer, attn_layer=attn_layer, attn_kwargs=attn_kwargs)
    return cfg


def _nfreg_cfg(depths, channels=(48, 104, 208, 440)):
    num_features = 1280 * channels[-1] // 440
    attn_kwargs = dict(rd_ratio=0.5)
    cfg = NfCfg(
        depths=depths, channels=channels, stem_type='3x3', group_size=8, width_factor=0.75, bottle_ratio=2.25,
        num_features=num_features, reg=True, attn_layer='se', attn_kwargs=attn_kwargs)
    return cfg


def _nfnet_cfg(

        depths, channels=(256, 512, 1536, 1536), group_size=128, bottle_ratio=0.5, feat_mult=2.,

        act_layer='gelu', attn_layer='se', attn_kwargs=None):
    num_features = int(channels[-1] * feat_mult)
    attn_kwargs = attn_kwargs if attn_kwargs is not None else dict(rd_ratio=0.5)
    cfg = NfCfg(
        depths=depths, channels=channels, stem_type='deep_quad', stem_chs=128, group_size=group_size,
        bottle_ratio=bottle_ratio, extra_conv=True, num_features=num_features, act_layer=act_layer,
        attn_layer=attn_layer, attn_kwargs=attn_kwargs)
    return cfg


def _dm_nfnet_cfg(depths, channels=(256, 512, 1536, 1536), act_layer='gelu', skipinit=True):
    cfg = NfCfg(
        depths=depths, channels=channels, stem_type='deep_quad', stem_chs=128, group_size=128,
        bottle_ratio=0.5, extra_conv=True, gamma_in_act=True, same_padding=True, skipinit=skipinit,
        num_features=int(channels[-1] * 2.0), act_layer=act_layer, attn_layer='se', attn_kwargs=dict(rd_ratio=0.5))
    return cfg


model_cfgs = dict(
    # NFNet-F models w/ GELU compatible with DeepMind weights
    dm_nfnet_f0=_dm_nfnet_cfg(depths=(1, 2, 6, 3)),
    dm_nfnet_f1=_dm_nfnet_cfg(depths=(2, 4, 12, 6)),
    dm_nfnet_f2=_dm_nfnet_cfg(depths=(3, 6, 18, 9)),
    dm_nfnet_f3=_dm_nfnet_cfg(depths=(4, 8, 24, 12)),
    dm_nfnet_f4=_dm_nfnet_cfg(depths=(5, 10, 30, 15)),
    dm_nfnet_f5=_dm_nfnet_cfg(depths=(6, 12, 36, 18)),
    dm_nfnet_f6=_dm_nfnet_cfg(depths=(7, 14, 42, 21)),

    # NFNet-F models w/ GELU
    nfnet_f0=_nfnet_cfg(depths=(1, 2, 6, 3)),
    nfnet_f1=_nfnet_cfg(depths=(2, 4, 12, 6)),
    nfnet_f2=_nfnet_cfg(depths=(3, 6, 18, 9)),
    nfnet_f3=_nfnet_cfg(depths=(4, 8, 24, 12)),
    nfnet_f4=_nfnet_cfg(depths=(5, 10, 30, 15)),
    nfnet_f5=_nfnet_cfg(depths=(6, 12, 36, 18)),
    nfnet_f6=_nfnet_cfg(depths=(7, 14, 42, 21)),
    nfnet_f7=_nfnet_cfg(depths=(8, 16, 48, 24)),

    # Experimental 'light' versions of NFNet-F that are little leaner
    nfnet_l0=_nfnet_cfg(
        depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25,
        attn_kwargs=dict(rd_ratio=0.25, rd_divisor=8), act_layer='silu'),
    eca_nfnet_l0=_nfnet_cfg(
        depths=(1, 2, 6, 3), feat_mult=1.5, group_size=64, bottle_ratio=0.25,
        attn_layer='eca', attn_kwargs=dict(), act_layer='silu'),
    eca_nfnet_l1=_nfnet_cfg(
        depths=(2, 4, 12, 6), feat_mult=2, group_size=64, bottle_ratio=0.25,
        attn_layer='eca', attn_kwargs=dict(), act_layer='silu'),
    eca_nfnet_l2=_nfnet_cfg(
        depths=(3, 6, 18, 9), feat_mult=2, group_size=64, bottle_ratio=0.25,
        attn_layer='eca', attn_kwargs=dict(), act_layer='silu'),
    eca_nfnet_l3=_nfnet_cfg(
        depths=(4, 8, 24, 12), feat_mult=2, group_size=64, bottle_ratio=0.25,
        attn_layer='eca', attn_kwargs=dict(), act_layer='silu'),

    # EffNet influenced RegNet defs.
    # NOTE: These aren't quite the official ver, ch_div=1 must be set for exact ch counts. I round to ch_div=8.
    nf_regnet_b0=_nfreg_cfg(depths=(1, 3, 6, 6)),
    nf_regnet_b1=_nfreg_cfg(depths=(2, 4, 7, 7)),
    nf_regnet_b2=_nfreg_cfg(depths=(2, 4, 8, 8), channels=(56, 112, 232, 488)),
    nf_regnet_b3=_nfreg_cfg(depths=(2, 5, 9, 9), channels=(56, 128, 248, 528)),
    nf_regnet_b4=_nfreg_cfg(depths=(2, 6, 11, 11), channels=(64, 144, 288, 616)),
    nf_regnet_b5=_nfreg_cfg(depths=(3, 7, 14, 14), channels=(80, 168, 336, 704)),
    # FIXME add B6-B8

    # ResNet (preact, D style deep stem/avg down) defs
    nf_resnet26=_nfres_cfg(depths=(2, 2, 2, 2)),
    nf_resnet50=_nfres_cfg(depths=(3, 4, 6, 3)),
    nf_resnet101=_nfres_cfg(depths=(3, 4, 23, 3)),

    nf_seresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)),
    nf_seresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)),
    nf_seresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='se', attn_kwargs=dict(rd_ratio=1/16)),

    nf_ecaresnet26=_nfres_cfg(depths=(2, 2, 2, 2), attn_layer='eca', attn_kwargs=dict()),
    nf_ecaresnet50=_nfres_cfg(depths=(3, 4, 6, 3), attn_layer='eca', attn_kwargs=dict()),
    nf_ecaresnet101=_nfres_cfg(depths=(3, 4, 23, 3), attn_layer='eca', attn_kwargs=dict()),

)


class GammaAct(nn.Module):
    def __init__(self, act_type='relu', gamma: float = 1.0, inplace=False):
        super().__init__()
        self.act_fn = get_act_fn(act_type)
        self.gamma = gamma
        self.inplace = inplace

    def forward(self, x):
        return self.act_fn(x, inplace=self.inplace).mul_(self.gamma)


def act_with_gamma(act_type, gamma: float = 1.):
    def _create(inplace=False):
        return GammaAct(act_type, gamma=gamma, inplace=inplace)
    return _create


class DownsampleAvg(nn.Module):
    def __init__(

            self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, conv_layer=ScaledStdConv2d):
        """ AvgPool Downsampling as in 'D' ResNet variants. Support for dilation."""
        super(DownsampleAvg, self).__init__()
        avg_stride = stride if dilation == 1 else 1
        if stride > 1 or dilation > 1:
            avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
            self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
        else:
            self.pool = nn.Identity()
        self.conv = conv_layer(in_chs, out_chs, 1, stride=1)

    def forward(self, x):
        return self.conv(self.pool(x))


@register_notrace_module  # reason: mul_ causes FX to drop a relevant node. https://github.com/pytorch/pytorch/issues/68301
class NormFreeBlock(nn.Module):
    """Normalization-Free pre-activation block.

    """

    def __init__(

            self, in_chs, out_chs=None, stride=1, dilation=1, first_dilation=None,

            alpha=1.0, beta=1.0, bottle_ratio=0.25, group_size=None, ch_div=1, reg=True, extra_conv=False,

            skipinit=False, attn_layer=None, attn_gain=2.0, act_layer=None, conv_layer=None, drop_path_rate=0.):
        super().__init__()
        first_dilation = first_dilation or dilation
        out_chs = out_chs or in_chs
        # RegNet variants scale bottleneck from in_chs, otherwise scale from out_chs like ResNet
        mid_chs = make_divisible(in_chs * bottle_ratio if reg else out_chs * bottle_ratio, ch_div)
        groups = 1 if not group_size else mid_chs // group_size
        if group_size and group_size % ch_div == 0:
            mid_chs = group_size * groups  # correct mid_chs if group_size divisible by ch_div, otherwise error
        self.alpha = alpha
        self.beta = beta
        self.attn_gain = attn_gain

        if in_chs != out_chs or stride != 1 or dilation != first_dilation:
            self.downsample = DownsampleAvg(
                in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, conv_layer=conv_layer)
        else:
            self.downsample = None

        self.act1 = act_layer()
        self.conv1 = conv_layer(in_chs, mid_chs, 1)
        self.act2 = act_layer(inplace=True)
        self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
        if extra_conv:
            self.act2b = act_layer(inplace=True)
            self.conv2b = conv_layer(mid_chs, mid_chs, 3, stride=1, dilation=dilation, groups=groups)
        else:
            self.act2b = None
            self.conv2b = None
        if reg and attn_layer is not None:
            self.attn = attn_layer(mid_chs)  # RegNet blocks apply attn btw conv2 & 3
        else:
            self.attn = None
        self.act3 = act_layer()
        self.conv3 = conv_layer(mid_chs, out_chs, 1, gain_init=1. if skipinit else 0.)
        if not reg and attn_layer is not None:
            self.attn_last = attn_layer(out_chs)  # ResNet blocks apply attn after conv3
        else:
            self.attn_last = None
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
        self.skipinit_gain = nn.Parameter(torch.tensor(0.)) if skipinit else None

    def forward(self, x):
        out = self.act1(x) * self.beta

        # shortcut branch
        shortcut = x
        if self.downsample is not None:
            shortcut = self.downsample(out)

        # residual branch
        out = self.conv1(out)
        out = self.conv2(self.act2(out))
        if self.conv2b is not None:
            out = self.conv2b(self.act2b(out))
        if self.attn is not None:
            out = self.attn_gain * self.attn(out)
        out = self.conv3(self.act3(out))
        if self.attn_last is not None:
            out = self.attn_gain * self.attn_last(out)
        out = self.drop_path(out)

        if self.skipinit_gain is not None:
            out.mul_(self.skipinit_gain)  # this slows things down more than expected, TBD
        out = out * self.alpha + shortcut
        return out


def create_stem(in_chs, out_chs, stem_type='', conv_layer=None, act_layer=None, preact_feature=True):
    stem_stride = 2
    stem_feature = dict(num_chs=out_chs, reduction=2, module='stem.conv')
    stem = OrderedDict()
    assert stem_type in ('', 'deep', 'deep_tiered', 'deep_quad', '3x3', '7x7', 'deep_pool', '3x3_pool', '7x7_pool')
    if 'deep' in stem_type:
        if 'quad' in stem_type:
            # 4 deep conv stack as in NFNet-F models
            assert not 'pool' in stem_type
            stem_chs = (out_chs // 8, out_chs // 4, out_chs // 2, out_chs)
            strides = (2, 1, 1, 2)
            stem_stride = 4
            stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv3')
        else:
            if 'tiered' in stem_type:
                stem_chs = (3 * out_chs // 8, out_chs // 2, out_chs)  # 'T' resnets in resnet.py
            else:
                stem_chs = (out_chs // 2, out_chs // 2, out_chs)  # 'D' ResNets
            strides = (2, 1, 1)
            stem_feature = dict(num_chs=out_chs // 2, reduction=2, module='stem.conv2')
        last_idx = len(stem_chs) - 1
        for i, (c, s) in enumerate(zip(stem_chs, strides)):
            stem[f'conv{i + 1}'] = conv_layer(in_chs, c, kernel_size=3, stride=s)
            if i != last_idx:
                stem[f'act{i + 2}'] = act_layer(inplace=True)
            in_chs = c
    elif '3x3' in stem_type:
        # 3x3 stem conv as in RegNet
        stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=3, stride=2)
    else:
        # 7x7 stem conv as in ResNet
        stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2)

    if 'pool' in stem_type:
        stem['pool'] = nn.MaxPool2d(3, stride=2, padding=1)
        stem_stride = 4

    return nn.Sequential(stem), stem_stride, stem_feature


# from https://github.com/deepmind/deepmind-research/tree/master/nfnets
_nonlin_gamma = dict(
    identity=1.0,
    celu=1.270926833152771,
    elu=1.2716004848480225,
    gelu=1.7015043497085571,
    leaky_relu=1.70590341091156,
    log_sigmoid=1.9193484783172607,
    log_softmax=1.0002083778381348,
    relu=1.7139588594436646,
    relu6=1.7131484746932983,
    selu=1.0008515119552612,
    sigmoid=4.803835391998291,
    silu=1.7881293296813965,
    softsign=2.338853120803833,
    softplus=1.9203323125839233,
    tanh=1.5939117670059204,
)


class NormFreeNet(nn.Module):
    """ Normalization-Free Network



    As described in :

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    and

    `High-Performance Large-Scale Image Recognition Without Normalization` - https://arxiv.org/abs/2102.06171



    This model aims to cover both the NFRegNet-Bx models as detailed in the paper's code snippets and

    the (preact) ResNet models described earlier in the paper.



    There are a few differences:

        * channels are rounded to be divisible by 8 by default (keep tensor core kernels happy),

            this changes channel dim and param counts slightly from the paper models

        * activation correcting gamma constants are moved into the ScaledStdConv as it has less performance

            impact in PyTorch when done with the weight scaling there. This likely wasn't a concern in the JAX impl.

        * a config option `gamma_in_act` can be enabled to not apply gamma in StdConv as described above, but

            apply it in each activation. This is slightly slower, numerically different, but matches official impl.

        * skipinit is disabled by default, it seems to have a rather drastic impact on GPU memory use and throughput

            for what it is/does. Approx 8-10% throughput loss.

    """
    def __init__(

            self, cfg: NfCfg, num_classes=1000, in_chans=3, global_pool='avg', output_stride=32,

            drop_rate=0., drop_path_rate=0.

    ):
        super().__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.grad_checkpointing = False

        assert cfg.act_layer in _nonlin_gamma, f"Please add non-linearity constants for activation ({cfg.act_layer})."
        conv_layer = ScaledStdConv2dSame if cfg.same_padding else ScaledStdConv2d
        if cfg.gamma_in_act:
            act_layer = act_with_gamma(cfg.act_layer, gamma=_nonlin_gamma[cfg.act_layer])
            conv_layer = partial(conv_layer, eps=cfg.std_conv_eps)
        else:
            act_layer = get_act_layer(cfg.act_layer)
            conv_layer = partial(conv_layer, gamma=_nonlin_gamma[cfg.act_layer], eps=cfg.std_conv_eps)
        attn_layer = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None

        stem_chs = make_divisible((cfg.stem_chs or cfg.channels[0]) * cfg.width_factor, cfg.ch_div)
        self.stem, stem_stride, stem_feat = create_stem(
            in_chans, stem_chs, cfg.stem_type, conv_layer=conv_layer, act_layer=act_layer)

        self.feature_info = [stem_feat]
        drop_path_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)]
        prev_chs = stem_chs
        net_stride = stem_stride
        dilation = 1
        expected_var = 1.0
        stages = []
        for stage_idx, stage_depth in enumerate(cfg.depths):
            stride = 1 if stage_idx == 0 and stem_stride > 2 else 2
            if net_stride >= output_stride and stride > 1:
                dilation *= stride
                stride = 1
            net_stride *= stride
            first_dilation = 1 if dilation in (1, 2) else 2

            blocks = []
            for block_idx in range(cfg.depths[stage_idx]):
                first_block = block_idx == 0 and stage_idx == 0
                out_chs = make_divisible(cfg.channels[stage_idx] * cfg.width_factor, cfg.ch_div)
                blocks += [NormFreeBlock(
                    in_chs=prev_chs, out_chs=out_chs,
                    alpha=cfg.alpha,
                    beta=1. / expected_var ** 0.5,
                    stride=stride if block_idx == 0 else 1,
                    dilation=dilation,
                    first_dilation=first_dilation,
                    group_size=cfg.group_size,
                    bottle_ratio=1. if cfg.reg and first_block else cfg.bottle_ratio,
                    ch_div=cfg.ch_div,
                    reg=cfg.reg,
                    extra_conv=cfg.extra_conv,
                    skipinit=cfg.skipinit,
                    attn_layer=attn_layer,
                    attn_gain=cfg.attn_gain,
                    act_layer=act_layer,
                    conv_layer=conv_layer,
                    drop_path_rate=drop_path_rates[stage_idx][block_idx],
                )]
                if block_idx == 0:
                    expected_var = 1.  # expected var is reset after first block of each stage
                expected_var += cfg.alpha ** 2   # Even if reset occurs, increment expected variance
                first_dilation = dilation
                prev_chs = out_chs
            self.feature_info += [dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')]
            stages += [nn.Sequential(*blocks)]
        self.stages = nn.Sequential(*stages)

        if cfg.num_features:
            # The paper NFRegNet models have an EfficientNet-like final head convolution.
            self.num_features = make_divisible(cfg.width_factor * cfg.num_features, cfg.ch_div)
            self.final_conv = conv_layer(prev_chs, self.num_features, 1)
            self.feature_info[-1] = dict(num_chs=self.num_features, reduction=net_stride, module=f'final_conv')
        else:
            self.num_features = prev_chs
            self.final_conv = nn.Identity()
        self.final_act = act_layer(inplace=cfg.num_features > 0)

        self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)

        for n, m in self.named_modules():
            if 'fc' in n and isinstance(m, nn.Linear):
                if cfg.zero_init_fc:
                    nn.init.zeros_(m.weight)
                else:
                    nn.init.normal_(m.weight, 0., .01)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='linear')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^stem',
            blocks=[
                (r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None),
                (r'^final_conv', (99999,))
            ]
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)

    def forward_features(self, x):
        x = self.stem(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.stages, x)
        else:
            x = self.stages(x)
        x = self.final_conv(x)
        x = self.final_act(x)
        return x

    def forward_head(self, x):
        return self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_normfreenet(variant, pretrained=False, **kwargs):
    model_cfg = model_cfgs[variant]
    feature_cfg = dict(flatten_sequential=True)
    return build_model_with_cfg(
        NormFreeNet, variant, pretrained,
        model_cfg=model_cfg,
        feature_cfg=feature_cfg,
        **kwargs)


@register_model
def dm_nfnet_f0(pretrained=False, **kwargs):
    """ NFNet-F0 (DeepMind weight compatible)

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('dm_nfnet_f0', pretrained=pretrained, **kwargs)


@register_model
def dm_nfnet_f1(pretrained=False, **kwargs):
    """ NFNet-F1 (DeepMind weight compatible)

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('dm_nfnet_f1', pretrained=pretrained, **kwargs)


@register_model
def dm_nfnet_f2(pretrained=False, **kwargs):
    """ NFNet-F2 (DeepMind weight compatible)

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('dm_nfnet_f2', pretrained=pretrained, **kwargs)


@register_model
def dm_nfnet_f3(pretrained=False, **kwargs):
    """ NFNet-F3 (DeepMind weight compatible)

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('dm_nfnet_f3', pretrained=pretrained, **kwargs)


@register_model
def dm_nfnet_f4(pretrained=False, **kwargs):
    """ NFNet-F4 (DeepMind weight compatible)

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('dm_nfnet_f4', pretrained=pretrained, **kwargs)


@register_model
def dm_nfnet_f5(pretrained=False, **kwargs):
    """ NFNet-F5 (DeepMind weight compatible)

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('dm_nfnet_f5', pretrained=pretrained, **kwargs)


@register_model
def dm_nfnet_f6(pretrained=False, **kwargs):
    """ NFNet-F6 (DeepMind weight compatible)

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('dm_nfnet_f6', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f0(pretrained=False, **kwargs):
    """ NFNet-F0

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f0', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f1(pretrained=False, **kwargs):
    """ NFNet-F1

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f1', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f2(pretrained=False, **kwargs):
    """ NFNet-F2

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f2', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f3(pretrained=False, **kwargs):
    """ NFNet-F3

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f3', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f4(pretrained=False, **kwargs):
    """ NFNet-F4

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f4', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f5(pretrained=False, **kwargs):
    """ NFNet-F5

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f5', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f6(pretrained=False, **kwargs):
    """ NFNet-F6

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f6', pretrained=pretrained, **kwargs)


@register_model
def nfnet_f7(pretrained=False, **kwargs):
    """ NFNet-F7

    `High-Performance Large-Scale Image Recognition Without Normalization`

        - https://arxiv.org/abs/2102.06171

    """
    return _create_normfreenet('nfnet_f7', pretrained=pretrained, **kwargs)


@register_model
def nfnet_l0(pretrained=False, **kwargs):
    """ NFNet-L0b w/ SiLU

    My experimental 'light' model w/ F0 repeats, 1.5x final_conv mult, 64 group_size, .25 bottleneck & SE ratio

    """
    return _create_normfreenet('nfnet_l0', pretrained=pretrained, **kwargs)


@register_model
def eca_nfnet_l0(pretrained=False, **kwargs):
    """ ECA-NFNet-L0 w/ SiLU

    My experimental 'light' model w/ F0 repeats, 1.5x final_conv mult, 64 group_size, .25 bottleneck & ECA attn

    """
    return _create_normfreenet('eca_nfnet_l0', pretrained=pretrained, **kwargs)


@register_model
def eca_nfnet_l1(pretrained=False, **kwargs):
    """ ECA-NFNet-L1 w/ SiLU

    My experimental 'light' model w/ F1 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn

    """
    return _create_normfreenet('eca_nfnet_l1', pretrained=pretrained, **kwargs)


@register_model
def eca_nfnet_l2(pretrained=False, **kwargs):
    """ ECA-NFNet-L2 w/ SiLU

    My experimental 'light' model w/ F2 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn

    """
    return _create_normfreenet('eca_nfnet_l2', pretrained=pretrained, **kwargs)


@register_model
def eca_nfnet_l3(pretrained=False, **kwargs):
    """ ECA-NFNet-L3 w/ SiLU

    My experimental 'light' model w/ F3 repeats, 2.0x final_conv mult, 64 group_size, .25 bottleneck & ECA attn

    """
    return _create_normfreenet('eca_nfnet_l3', pretrained=pretrained, **kwargs)


@register_model
def nf_regnet_b0(pretrained=False, **kwargs):
    """ Normalization-Free RegNet-B0

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_regnet_b0', pretrained=pretrained, **kwargs)


@register_model
def nf_regnet_b1(pretrained=False, **kwargs):
    """ Normalization-Free RegNet-B1

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_regnet_b1', pretrained=pretrained, **kwargs)


@register_model
def nf_regnet_b2(pretrained=False, **kwargs):
    """ Normalization-Free RegNet-B2

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_regnet_b2', pretrained=pretrained, **kwargs)


@register_model
def nf_regnet_b3(pretrained=False, **kwargs):
    """ Normalization-Free RegNet-B3

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_regnet_b3', pretrained=pretrained, **kwargs)


@register_model
def nf_regnet_b4(pretrained=False, **kwargs):
    """ Normalization-Free RegNet-B4

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_regnet_b4', pretrained=pretrained, **kwargs)


@register_model
def nf_regnet_b5(pretrained=False, **kwargs):
    """ Normalization-Free RegNet-B5

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_regnet_b5', pretrained=pretrained, **kwargs)


@register_model
def nf_resnet26(pretrained=False, **kwargs):
    """ Normalization-Free ResNet-26

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_resnet26', pretrained=pretrained, **kwargs)


@register_model
def nf_resnet50(pretrained=False, **kwargs):
    """ Normalization-Free ResNet-50

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_resnet50', pretrained=pretrained, **kwargs)


@register_model
def nf_resnet101(pretrained=False, **kwargs):
    """ Normalization-Free ResNet-101

    `Characterizing signal propagation to close the performance gap in unnormalized ResNets`

        - https://arxiv.org/abs/2101.08692

    """
    return _create_normfreenet('nf_resnet101', pretrained=pretrained, **kwargs)


@register_model
def nf_seresnet26(pretrained=False, **kwargs):
    """ Normalization-Free SE-ResNet26

    """
    return _create_normfreenet('nf_seresnet26', pretrained=pretrained, **kwargs)


@register_model
def nf_seresnet50(pretrained=False, **kwargs):
    """ Normalization-Free SE-ResNet50

    """
    return _create_normfreenet('nf_seresnet50', pretrained=pretrained, **kwargs)


@register_model
def nf_seresnet101(pretrained=False, **kwargs):
    """ Normalization-Free SE-ResNet101

    """
    return _create_normfreenet('nf_seresnet101', pretrained=pretrained, **kwargs)


@register_model
def nf_ecaresnet26(pretrained=False, **kwargs):
    """ Normalization-Free ECA-ResNet26

    """
    return _create_normfreenet('nf_ecaresnet26', pretrained=pretrained, **kwargs)


@register_model
def nf_ecaresnet50(pretrained=False, **kwargs):
    """ Normalization-Free ECA-ResNet50

    """
    return _create_normfreenet('nf_ecaresnet50', pretrained=pretrained, **kwargs)


@register_model
def nf_ecaresnet101(pretrained=False, **kwargs):
    """ Normalization-Free ECA-ResNet101

    """
    return _create_normfreenet('nf_ecaresnet101', pretrained=pretrained, **kwargs)