File size: 14,298 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
""" Pooling-based Vision Transformer (PiT) in PyTorch



A PyTorch implement of Pooling-based Vision Transformers as described in

'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302



This code was adapted from the original version at https://github.com/naver-ai/pit, original copyright below.



Modifications for timm by / Copyright 2020 Ross Wightman

"""
# PiT
# Copyright 2021-present NAVER Corp.
# Apache License v2.0

import math
import re
from copy import deepcopy
from functools import partial
from typing import Tuple

import torch
from torch import nn

from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import trunc_normal_, to_2tuple
from .registry import register_model
from .vision_transformer import Block


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embed.conv', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # deit models (FB weights)
    'pit_ti_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_730.pth'),
    'pit_xs_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_781.pth'),
    'pit_s_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_809.pth'),
    'pit_b_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_820.pth'),
    'pit_ti_distilled_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_distill_746.pth',
        classifier=('head', 'head_dist')),
    'pit_xs_distilled_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_distill_791.pth',
        classifier=('head', 'head_dist')),
    'pit_s_distilled_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_distill_819.pth',
        classifier=('head', 'head_dist')),
    'pit_b_distilled_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_distill_840.pth',
        classifier=('head', 'head_dist')),
}


class SequentialTuple(nn.Sequential):
    """ This module exists to work around torchscript typing issues list -> list"""
    def __init__(self, *args):
        super(SequentialTuple, self).__init__(*args)

    def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
        for module in self:
            x = module(x)
        return x


class Transformer(nn.Module):
    def __init__(

            self, base_dim, depth, heads, mlp_ratio, pool=None, drop_rate=.0, attn_drop_rate=.0, drop_path_prob=None):
        super(Transformer, self).__init__()
        self.layers = nn.ModuleList([])
        embed_dim = base_dim * heads

        self.blocks = nn.Sequential(*[
            Block(
                dim=embed_dim,
                num_heads=heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=True,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=drop_path_prob[i],
                norm_layer=partial(nn.LayerNorm, eps=1e-6)
            )
            for i in range(depth)])

        self.pool = pool

    def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
        x, cls_tokens = x
        B, C, H, W = x.shape
        token_length = cls_tokens.shape[1]

        x = x.flatten(2).transpose(1, 2)
        x = torch.cat((cls_tokens, x), dim=1)

        x = self.blocks(x)

        cls_tokens = x[:, :token_length]
        x = x[:, token_length:]
        x = x.transpose(1, 2).reshape(B, C, H, W)

        if self.pool is not None:
            x, cls_tokens = self.pool(x, cls_tokens)
        return x, cls_tokens


class ConvHeadPooling(nn.Module):
    def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'):
        super(ConvHeadPooling, self).__init__()

        self.conv = nn.Conv2d(
            in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride,
            padding_mode=padding_mode, groups=in_feature)
        self.fc = nn.Linear(in_feature, out_feature)

    def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]:
        x = self.conv(x)
        cls_token = self.fc(cls_token)
        return x, cls_token


class ConvEmbedding(nn.Module):
    def __init__(self, in_channels, out_channels, patch_size, stride, padding):
        super(ConvEmbedding, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, out_channels, kernel_size=patch_size, stride=stride, padding=padding, bias=True)

    def forward(self, x):
        x = self.conv(x)
        return x


class PoolingVisionTransformer(nn.Module):
    """ Pooling-based Vision Transformer



    A PyTorch implement of 'Rethinking Spatial Dimensions of Vision Transformers'

        - https://arxiv.org/abs/2103.16302

    """
    def __init__(

            self, img_size, patch_size, stride, base_dims, depth, heads,

            mlp_ratio, num_classes=1000, in_chans=3, global_pool='token',

            distilled=False, attn_drop_rate=.0, drop_rate=.0, drop_path_rate=.0):
        super(PoolingVisionTransformer, self).__init__()
        assert global_pool in ('token',)

        padding = 0
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        height = math.floor((img_size[0] + 2 * padding - patch_size[0]) / stride + 1)
        width = math.floor((img_size[1] + 2 * padding - patch_size[1]) / stride + 1)

        self.base_dims = base_dims
        self.heads = heads
        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_tokens = 2 if distilled else 1

        self.patch_size = patch_size
        self.pos_embed = nn.Parameter(torch.randn(1, base_dims[0] * heads[0], height, width))
        self.patch_embed = ConvEmbedding(in_chans, base_dims[0] * heads[0], patch_size, stride, padding)

        self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, base_dims[0] * heads[0]))
        self.pos_drop = nn.Dropout(p=drop_rate)

        transformers = []
        # stochastic depth decay rule
        dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)]
        for stage in range(len(depth)):
            pool = None
            if stage < len(heads) - 1:
                pool = ConvHeadPooling(
                    base_dims[stage] * heads[stage], base_dims[stage + 1] * heads[stage + 1], stride=2)
            transformers += [Transformer(
                base_dims[stage], depth[stage], heads[stage], mlp_ratio, pool=pool,
                drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_prob=dpr[stage])
            ]
        self.transformers = SequentialTuple(*transformers)
        self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6)
        self.num_features = self.embed_dim = base_dims[-1] * heads[-1]

        # Classifier head
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        self.head_dist = None
        if distilled:
            self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
        self.distilled_training = False  # must set this True to train w/ distillation token

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    @torch.jit.ignore
    def set_distilled_training(self, enable=True):
        self.distilled_training = enable

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    def get_classifier(self):
        if self.head_dist is not None:
            return self.head, self.head_dist
        else:
            return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        if self.head_dist is not None:
            self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = self.pos_drop(x + self.pos_embed)
        cls_tokens = self.cls_token.expand(x.shape[0], -1, -1)
        x, cls_tokens = self.transformers((x, cls_tokens))
        cls_tokens = self.norm(cls_tokens)
        return cls_tokens

    def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor:
        if self.head_dist is not None:
            assert self.global_pool == 'token'
            x, x_dist = x[:, 0], x[:, 1]
            if not pre_logits:
                x = self.head(x)
                x_dist = self.head_dist(x_dist)
            if self.distilled_training and self.training and not torch.jit.is_scripting():
                # only return separate classification predictions when training in distilled mode
                return x, x_dist
            else:
                # during standard train / finetune, inference average the classifier predictions
                return (x + x_dist) / 2
        else:
            if self.global_pool == 'token':
                x = x[:, 0]
            if not pre_logits:
                x = self.head(x)
            return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def checkpoint_filter_fn(state_dict, model):
    """ preprocess checkpoints """
    out_dict = {}
    p_blocks = re.compile(r'pools\.(\d)\.')
    for k, v in state_dict.items():
        # FIXME need to update resize for PiT impl
        # if k == 'pos_embed' and v.shape != model.pos_embed.shape:
        #     # To resize pos embedding when using model at different size from pretrained weights
        #     v = resize_pos_embed(v, model.pos_embed)
        k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1))}.pool.', k)
        out_dict[k] = v
    return out_dict


def _create_pit(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    model = build_model_with_cfg(
        PoolingVisionTransformer, variant, pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        **kwargs)
    return model


@register_model
def pit_b_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=14,
        stride=7,
        base_dims=[64, 64, 64],
        depth=[3, 6, 4],
        heads=[4, 8, 16],
        mlp_ratio=4,
        **kwargs
    )
    return _create_pit('pit_b_224', pretrained, **model_kwargs)


@register_model
def pit_s_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=16,
        stride=8,
        base_dims=[48, 48, 48],
        depth=[2, 6, 4],
        heads=[3, 6, 12],
        mlp_ratio=4,
        **kwargs
    )
    return _create_pit('pit_s_224', pretrained, **model_kwargs)


@register_model
def pit_xs_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=16,
        stride=8,
        base_dims=[48, 48, 48],
        depth=[2, 6, 4],
        heads=[2, 4, 8],
        mlp_ratio=4,
        **kwargs
    )
    return _create_pit('pit_xs_224', pretrained, **model_kwargs)


@register_model
def pit_ti_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=16,
        stride=8,
        base_dims=[32, 32, 32],
        depth=[2, 6, 4],
        heads=[2, 4, 8],
        mlp_ratio=4,
        **kwargs
    )
    return _create_pit('pit_ti_224', pretrained, **model_kwargs)


@register_model
def pit_b_distilled_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=14,
        stride=7,
        base_dims=[64, 64, 64],
        depth=[3, 6, 4],
        heads=[4, 8, 16],
        mlp_ratio=4,
        distilled=True,
        **kwargs
    )
    return _create_pit('pit_b_distilled_224', pretrained, **model_kwargs)


@register_model
def pit_s_distilled_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=16,
        stride=8,
        base_dims=[48, 48, 48],
        depth=[2, 6, 4],
        heads=[3, 6, 12],
        mlp_ratio=4,
        distilled=True,
        **kwargs
    )
    return _create_pit('pit_s_distilled_224', pretrained, **model_kwargs)


@register_model
def pit_xs_distilled_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=16,
        stride=8,
        base_dims=[48, 48, 48],
        depth=[2, 6, 4],
        heads=[2, 4, 8],
        mlp_ratio=4,
        distilled=True,
        **kwargs
    )
    return _create_pit('pit_xs_distilled_224', pretrained, **model_kwargs)


@register_model
def pit_ti_distilled_224(pretrained, **kwargs):
    model_kwargs = dict(
        patch_size=16,
        stride=8,
        base_dims=[32, 32, 32],
        depth=[2, 6, 4],
        heads=[2, 4, 8],
        mlp_ratio=4,
        distilled=True,
        **kwargs
    )
    return _create_pit('pit_ti_distilled_224', pretrained, **model_kwargs)