Spaces:
Running
Running
File size: 15,701 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
"""
pnasnet5large implementation grabbed from Cadene's pretrained models
Additional credit to https://github.com/creafz
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/pnasnet.py
"""
from collections import OrderedDict
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from .helpers import build_model_with_cfg
from .layers import ConvNormAct, create_conv2d, create_pool2d, create_classifier
from .registry import register_model
__all__ = ['PNASNet5Large']
default_cfgs = {
'pnasnet5large': {
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/pnasnet5large-bf079911.pth',
'input_size': (3, 331, 331),
'pool_size': (11, 11),
'crop_pct': 0.911,
'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5),
'std': (0.5, 0.5, 0.5),
'num_classes': 1000,
'first_conv': 'conv_0.conv',
'classifier': 'last_linear',
'label_offset': 1, # 1001 classes in pretrained weights
},
}
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=''):
super(SeparableConv2d, self).__init__()
self.depthwise_conv2d = create_conv2d(
in_channels, in_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=in_channels)
self.pointwise_conv2d = create_conv2d(
in_channels, out_channels, kernel_size=1, padding=padding)
def forward(self, x):
x = self.depthwise_conv2d(x)
x = self.pointwise_conv2d(x)
return x
class BranchSeparables(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, stem_cell=False, padding=''):
super(BranchSeparables, self).__init__()
middle_channels = out_channels if stem_cell else in_channels
self.act_1 = nn.ReLU()
self.separable_1 = SeparableConv2d(
in_channels, middle_channels, kernel_size, stride=stride, padding=padding)
self.bn_sep_1 = nn.BatchNorm2d(middle_channels, eps=0.001)
self.act_2 = nn.ReLU()
self.separable_2 = SeparableConv2d(
middle_channels, out_channels, kernel_size, stride=1, padding=padding)
self.bn_sep_2 = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.act_1(x)
x = self.separable_1(x)
x = self.bn_sep_1(x)
x = self.act_2(x)
x = self.separable_2(x)
x = self.bn_sep_2(x)
return x
class ActConvBn(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=''):
super(ActConvBn, self).__init__()
self.act = nn.ReLU()
self.conv = create_conv2d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.act(x)
x = self.conv(x)
x = self.bn(x)
return x
class FactorizedReduction(nn.Module):
def __init__(self, in_channels, out_channels, padding=''):
super(FactorizedReduction, self).__init__()
self.act = nn.ReLU()
self.path_1 = nn.Sequential(OrderedDict([
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)),
]))
self.path_2 = nn.Sequential(OrderedDict([
('pad', nn.ZeroPad2d((-1, 1, -1, 1))), # shift
('avgpool', nn.AvgPool2d(1, stride=2, count_include_pad=False)),
('conv', create_conv2d(in_channels, out_channels // 2, kernel_size=1, padding=padding)),
]))
self.final_path_bn = nn.BatchNorm2d(out_channels, eps=0.001)
def forward(self, x):
x = self.act(x)
x_path1 = self.path_1(x)
x_path2 = self.path_2(x)
out = self.final_path_bn(torch.cat([x_path1, x_path2], 1))
return out
class CellBase(nn.Module):
def cell_forward(self, x_left, x_right):
x_comb_iter_0_left = self.comb_iter_0_left(x_left)
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_right)
x_comb_iter_1_right = self.comb_iter_1_right(x_right)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
x_comb_iter_2_right = self.comb_iter_2_right(x_right)
x_comb_iter_2 = x_comb_iter_2_left + x_comb_iter_2_right
x_comb_iter_3_left = self.comb_iter_3_left(x_comb_iter_2)
x_comb_iter_3_right = self.comb_iter_3_right(x_right)
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right
x_comb_iter_4_left = self.comb_iter_4_left(x_left)
if self.comb_iter_4_right is not None:
x_comb_iter_4_right = self.comb_iter_4_right(x_right)
else:
x_comb_iter_4_right = x_right
x_comb_iter_4 = x_comb_iter_4_left + x_comb_iter_4_right
x_out = torch.cat([x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
return x_out
class CellStem0(CellBase):
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type=''):
super(CellStem0, self).__init__()
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type)
self.comb_iter_0_left = BranchSeparables(
in_chs_left, out_chs_left, kernel_size=5, stride=2, stem_cell=True, padding=pad_type)
self.comb_iter_0_right = nn.Sequential(OrderedDict([
('max_pool', create_pool2d('max', 3, stride=2, padding=pad_type)),
('conv', create_conv2d(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)),
('bn', nn.BatchNorm2d(out_chs_left, eps=0.001)),
]))
self.comb_iter_1_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=7, stride=2, padding=pad_type)
self.comb_iter_1_right = create_pool2d('max', 3, stride=2, padding=pad_type)
self.comb_iter_2_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=5, stride=2, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=3, stride=2, padding=pad_type)
self.comb_iter_3_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=3, padding=pad_type)
self.comb_iter_3_right = create_pool2d('max', 3, stride=2, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(
in_chs_right, out_chs_right, kernel_size=3, stride=2, stem_cell=True, padding=pad_type)
self.comb_iter_4_right = ActConvBn(
out_chs_right, out_chs_right, kernel_size=1, stride=2, padding=pad_type)
def forward(self, x_left):
x_right = self.conv_1x1(x_left)
x_out = self.cell_forward(x_left, x_right)
return x_out
class Cell(CellBase):
def __init__(self, in_chs_left, out_chs_left, in_chs_right, out_chs_right, pad_type='',
is_reduction=False, match_prev_layer_dims=False):
super(Cell, self).__init__()
# If `is_reduction` is set to `True` stride 2 is used for
# convolution and pooling layers to reduce the spatial size of
# the output of a cell approximately by a factor of 2.
stride = 2 if is_reduction else 1
# If `match_prev_layer_dimensions` is set to `True`
# `FactorizedReduction` is used to reduce the spatial size
# of the left input of a cell approximately by a factor of 2.
self.match_prev_layer_dimensions = match_prev_layer_dims
if match_prev_layer_dims:
self.conv_prev_1x1 = FactorizedReduction(in_chs_left, out_chs_left, padding=pad_type)
else:
self.conv_prev_1x1 = ActConvBn(in_chs_left, out_chs_left, kernel_size=1, padding=pad_type)
self.conv_1x1 = ActConvBn(in_chs_right, out_chs_right, kernel_size=1, padding=pad_type)
self.comb_iter_0_left = BranchSeparables(
out_chs_left, out_chs_left, kernel_size=5, stride=stride, padding=pad_type)
self.comb_iter_0_right = create_pool2d('max', 3, stride=stride, padding=pad_type)
self.comb_iter_1_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=7, stride=stride, padding=pad_type)
self.comb_iter_1_right = create_pool2d('max', 3, stride=stride, padding=pad_type)
self.comb_iter_2_left = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=5, stride=stride, padding=pad_type)
self.comb_iter_2_right = BranchSeparables(
out_chs_right, out_chs_right, kernel_size=3, stride=stride, padding=pad_type)
self.comb_iter_3_left = BranchSeparables(out_chs_right, out_chs_right, kernel_size=3)
self.comb_iter_3_right = create_pool2d('max', 3, stride=stride, padding=pad_type)
self.comb_iter_4_left = BranchSeparables(
out_chs_left, out_chs_left, kernel_size=3, stride=stride, padding=pad_type)
if is_reduction:
self.comb_iter_4_right = ActConvBn(
out_chs_right, out_chs_right, kernel_size=1, stride=stride, padding=pad_type)
else:
self.comb_iter_4_right = None
def forward(self, x_left, x_right):
x_left = self.conv_prev_1x1(x_left)
x_right = self.conv_1x1(x_right)
x_out = self.cell_forward(x_left, x_right)
return x_out
class PNASNet5Large(nn.Module):
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, drop_rate=0., global_pool='avg', pad_type=''):
super(PNASNet5Large, self).__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.num_features = 4320
assert output_stride == 32
self.conv_0 = ConvNormAct(
in_chans, 96, kernel_size=3, stride=2, padding=0,
norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.1), apply_act=False)
self.cell_stem_0 = CellStem0(
in_chs_left=96, out_chs_left=54, in_chs_right=96, out_chs_right=54, pad_type=pad_type)
self.cell_stem_1 = Cell(
in_chs_left=96, out_chs_left=108, in_chs_right=270, out_chs_right=108, pad_type=pad_type,
match_prev_layer_dims=True, is_reduction=True)
self.cell_0 = Cell(
in_chs_left=270, out_chs_left=216, in_chs_right=540, out_chs_right=216, pad_type=pad_type,
match_prev_layer_dims=True)
self.cell_1 = Cell(
in_chs_left=540, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
self.cell_2 = Cell(
in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
self.cell_3 = Cell(
in_chs_left=1080, out_chs_left=216, in_chs_right=1080, out_chs_right=216, pad_type=pad_type)
self.cell_4 = Cell(
in_chs_left=1080, out_chs_left=432, in_chs_right=1080, out_chs_right=432, pad_type=pad_type,
is_reduction=True)
self.cell_5 = Cell(
in_chs_left=1080, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type,
match_prev_layer_dims=True)
self.cell_6 = Cell(
in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type)
self.cell_7 = Cell(
in_chs_left=2160, out_chs_left=432, in_chs_right=2160, out_chs_right=432, pad_type=pad_type)
self.cell_8 = Cell(
in_chs_left=2160, out_chs_left=864, in_chs_right=2160, out_chs_right=864, pad_type=pad_type,
is_reduction=True)
self.cell_9 = Cell(
in_chs_left=2160, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type,
match_prev_layer_dims=True)
self.cell_10 = Cell(
in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type)
self.cell_11 = Cell(
in_chs_left=4320, out_chs_left=864, in_chs_right=4320, out_chs_right=864, pad_type=pad_type)
self.act = nn.ReLU()
self.feature_info = [
dict(num_chs=96, reduction=2, module='conv_0'),
dict(num_chs=270, reduction=4, module='cell_stem_1.conv_1x1.act'),
dict(num_chs=1080, reduction=8, module='cell_4.conv_1x1.act'),
dict(num_chs=2160, reduction=16, module='cell_8.conv_1x1.act'),
dict(num_chs=4320, reduction=32, module='act'),
]
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(stem=r'^conv_0|cell_stem_[01]', blocks=r'^cell_(\d+)')
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def get_classifier(self):
return self.last_linear
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.last_linear = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
x_conv_0 = self.conv_0(x)
x_stem_0 = self.cell_stem_0(x_conv_0)
x_stem_1 = self.cell_stem_1(x_conv_0, x_stem_0)
x_cell_0 = self.cell_0(x_stem_0, x_stem_1)
x_cell_1 = self.cell_1(x_stem_1, x_cell_0)
x_cell_2 = self.cell_2(x_cell_0, x_cell_1)
x_cell_3 = self.cell_3(x_cell_1, x_cell_2)
x_cell_4 = self.cell_4(x_cell_2, x_cell_3)
x_cell_5 = self.cell_5(x_cell_3, x_cell_4)
x_cell_6 = self.cell_6(x_cell_4, x_cell_5)
x_cell_7 = self.cell_7(x_cell_5, x_cell_6)
x_cell_8 = self.cell_8(x_cell_6, x_cell_7)
x_cell_9 = self.cell_9(x_cell_7, x_cell_8)
x_cell_10 = self.cell_10(x_cell_8, x_cell_9)
x_cell_11 = self.cell_11(x_cell_9, x_cell_10)
x = self.act(x_cell_11)
return x
def forward_head(self, x, pre_logits: bool = False):
x = self.global_pool(x)
if self.drop_rate > 0:
x = F.dropout(x, self.drop_rate, training=self.training)
return x if pre_logits else self.last_linear(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_pnasnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
PNASNet5Large, variant, pretrained,
feature_cfg=dict(feature_cls='hook', no_rewrite=True), # not possible to re-write this model
**kwargs)
@register_model
def pnasnet5large(pretrained=False, **kwargs):
r"""PNASNet-5 model architecture from the
`"Progressive Neural Architecture Search"
<https://arxiv.org/abs/1712.00559>`_ paper.
"""
model_kwargs = dict(pad_type='same', **kwargs)
return _create_pnasnet('pnasnet5large', pretrained, **model_kwargs)
|