File size: 5,390 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
""" PyTorch LARS / LARC Optimizer



An implementation of LARS (SGD) + LARC in PyTorch



Based on:

  * PyTorch SGD: https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100

  * NVIDIA APEX LARC: https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py



Additional cleanup and modifications to properly support PyTorch XLA.



Copyright 2021 Ross Wightman

"""
import torch
from torch.optim.optimizer import Optimizer


class Lars(Optimizer):
    """ LARS for PyTorch

    

    Paper: `Large batch training of Convolutional Networks` - https://arxiv.org/pdf/1708.03888.pdf



    Args:

        params (iterable): iterable of parameters to optimize or dicts defining parameter groups.

        lr (float, optional): learning rate (default: 1.0).

        momentum (float, optional): momentum factor (default: 0)

        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

        dampening (float, optional): dampening for momentum (default: 0)

        nesterov (bool, optional): enables Nesterov momentum (default: False)

        trust_coeff (float): trust coefficient for computing adaptive lr / trust_ratio (default: 0.001)

        eps (float): eps for division denominator (default: 1e-8)

        trust_clip (bool): enable LARC trust ratio clipping (default: False)

        always_adapt (bool): always apply LARS LR adapt, otherwise only when group weight_decay != 0 (default: False)

    """

    def __init__(

        self,

        params,

        lr=1.0,

        momentum=0,

        dampening=0,

        weight_decay=0,

        nesterov=False,

        trust_coeff=0.001,

        eps=1e-8,

        trust_clip=False,

        always_adapt=False,

    ):
        if lr < 0.0:
            raise ValueError(f"Invalid learning rate: {lr}")
        if momentum < 0.0:
            raise ValueError(f"Invalid momentum value: {momentum}")
        if weight_decay < 0.0:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError("Nesterov momentum requires a momentum and zero dampening")

        defaults = dict(
            lr=lr,
            momentum=momentum,
            dampening=dampening,
            weight_decay=weight_decay,
            nesterov=nesterov,
            trust_coeff=trust_coeff,
            eps=eps,
            trust_clip=trust_clip,
            always_adapt=always_adapt,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault("nesterov", False)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.



        Args:

            closure (callable, optional): A closure that reevaluates the model and returns the loss.

        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        device = self.param_groups[0]['params'][0].device
        one_tensor = torch.tensor(1.0, device=device)  # because torch.where doesn't handle scalars correctly

        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']
            trust_coeff = group['trust_coeff']
            eps = group['eps']

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad

                # apply LARS LR adaptation, LARC clipping, weight decay
                # ref: https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py
                if weight_decay != 0 or group['always_adapt']:
                    w_norm = p.norm(2.0)
                    g_norm = grad.norm(2.0)
                    trust_ratio = trust_coeff * w_norm / (g_norm + w_norm * weight_decay + eps)
                    # FIXME nested where required since logical and/or not working in PT XLA
                    trust_ratio = torch.where(
                        w_norm > 0,
                        torch.where(g_norm > 0, trust_ratio, one_tensor),
                        one_tensor,
                    )
                    if group['trust_clip']:
                        trust_ratio = torch.minimum(trust_ratio / group['lr'], one_tensor)
                    grad.add_(p, alpha=weight_decay)
                    grad.mul_(trust_ratio)

                # apply SGD update https://github.com/pytorch/pytorch/blob/1.7/torch/optim/sgd.py#L100
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.clone(grad).detach()
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(grad, alpha=1. - dampening)
                    if nesterov:
                        grad = grad.add(buf, alpha=momentum)
                    else:
                        grad = buf

                p.add_(grad, alpha=-group['lr'])

        return loss