File size: 7,077 Bytes
681fa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
""" PyTorch MADGRAD optimizer



MADGRAD: https://arxiv.org/abs/2101.11075



Code from: https://github.com/facebookresearch/madgrad

"""
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import TYPE_CHECKING, Any, Callable, Optional

import torch
import torch.optim

if TYPE_CHECKING:
    from torch.optim.optimizer import _params_t
else:
    _params_t = Any


class MADGRAD(torch.optim.Optimizer):
    """

    MADGRAD_: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic

    Optimization.



    .. _MADGRAD: https://arxiv.org/abs/2101.11075



    MADGRAD is a general purpose optimizer that can be used in place of SGD or

    Adam may converge faster and generalize better. Currently GPU-only.

    Typically, the same learning rate schedule that is used for SGD or Adam may

    be used. The overall learning rate is not comparable to either method and

    should be determined by a hyper-parameter sweep.



    MADGRAD requires less weight decay than other methods, often as little as

    zero. Momentum values used for SGD or Adam's beta1 should work here also.



    On sparse problems both weight_decay and momentum should be set to 0.



    Arguments:

        params (iterable):

            Iterable of parameters to optimize or dicts defining parameter groups.

        lr (float):

            Learning rate (default: 1e-2).

        momentum (float):

            Momentum value in  the range [0,1) (default: 0.9).

        weight_decay (float):

            Weight decay, i.e. a L2 penalty (default: 0).

        eps (float):

            Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-6).

    """

    def __init__(

            self,

            params: _params_t,

            lr: float = 1e-2,

            momentum: float = 0.9,

            weight_decay: float = 0,

            eps: float = 1e-6,

            decoupled_decay: bool = False,

    ):
        if momentum < 0 or momentum >= 1:
            raise ValueError(f"Momentum {momentum} must be in the range [0,1]")
        if lr <= 0:
            raise ValueError(f"Learning rate {lr} must be positive")
        if weight_decay < 0:
            raise ValueError(f"Weight decay {weight_decay} must be non-negative")
        if eps < 0:
            raise ValueError(f"Eps must be non-negative")

        defaults = dict(
            lr=lr, eps=eps, momentum=momentum, weight_decay=weight_decay, decoupled_decay=decoupled_decay)
        super().__init__(params, defaults)

    @property
    def supports_memory_efficient_fp16(self) -> bool:
        return False

    @property
    def supports_flat_params(self) -> bool:
        return True

    @torch.no_grad()
    def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
        """Performs a single optimization step.



        Arguments:

            closure (callable, optional): A closure that reevaluates the model and returns the loss.

        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            eps = group['eps']
            lr = group['lr'] + eps
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            ck = 1 - momentum

            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad
                if momentum != 0.0 and grad.is_sparse:
                    raise RuntimeError("momentum != 0 is not compatible with sparse gradients")

                state = self.state[p]
                if len(state) == 0:
                    state['step'] = 0
                    state['grad_sum_sq'] = torch.zeros_like(p)
                    state['s'] = torch.zeros_like(p)
                    if momentum != 0:
                        state['x0'] = torch.clone(p).detach()

                state['step'] += 1
                grad_sum_sq = state['grad_sum_sq']
                s = state['s']
                lamb = lr * math.sqrt(state['step'])

                # Apply weight decay
                if weight_decay != 0:
                    if group['decoupled_decay']:
                        p.mul_(1.0 - group['lr'] * weight_decay)
                    else:
                        if grad.is_sparse:
                            raise RuntimeError("weight_decay option is not compatible with sparse gradients")
                        grad.add_(p, alpha=weight_decay)

                if grad.is_sparse:
                    grad = grad.coalesce()
                    grad_val = grad._values()

                    p_masked = p.sparse_mask(grad)
                    grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad)
                    s_masked = s.sparse_mask(grad)

                    # Compute x_0 from other known quantities
                    rms_masked_vals = grad_sum_sq_masked._values().pow(1 / 3).add_(eps)
                    x0_masked_vals = p_masked._values().addcdiv(s_masked._values(), rms_masked_vals, value=1)

                    # Dense + sparse op
                    grad_sq = grad * grad
                    grad_sum_sq.add_(grad_sq, alpha=lamb)
                    grad_sum_sq_masked.add_(grad_sq, alpha=lamb)

                    rms_masked_vals = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps)

                    s.add_(grad, alpha=lamb)
                    s_masked._values().add_(grad_val, alpha=lamb)

                    # update masked copy of p
                    p_kp1_masked_vals = x0_masked_vals.addcdiv(s_masked._values(), rms_masked_vals, value=-1)
                    # Copy updated masked p to dense p using an add operation
                    p_masked._values().add_(p_kp1_masked_vals, alpha=-1)
                    p.add_(p_masked, alpha=-1)
                else:
                    if momentum == 0:
                        # Compute x_0 from other known quantities
                        rms = grad_sum_sq.pow(1 / 3).add_(eps)
                        x0 = p.addcdiv(s, rms, value=1)
                    else:
                        x0 = state['x0']

                    # Accumulate second moments
                    grad_sum_sq.addcmul_(grad, grad, value=lamb)
                    rms = grad_sum_sq.pow(1 / 3).add_(eps)

                    # Update s
                    s.add_(grad, alpha=lamb)

                    # Step
                    if momentum == 0:
                        p.copy_(x0.addcdiv(s, rms, value=-1))
                    else:
                        z = x0.addcdiv(s, rms, value=-1)

                        # p is a moving average of z
                        p.mul_(1 - ck).add_(z, alpha=ck)

        return loss